"Performance Analysis of Split-Case Sorting Systems"
by Johnson and Meller

Main Points

- Split-case sorting system operation and technology.
- Use Bernoulli process to model induction process and characterize negative effect of inductor interference.
- Faster inductors should be placed upstream.
- Split induction systems can outperform side-byside induction systems.
- Presorting can be used for increased throughput (but it can hurt picking).
"Performance Analysis of Split-Case Sorting Systems"
by Johnson and Meller

Introduction

- Used in order fulfillment centers (e.g., Amazon.com, L. L. Bean, or Sears).
- Need to fill lots of orders with common items.
- Can either go out and pick each order individually (stopping at the same location multiple times) or pick a batch of orders at a time and then sort them into individual orders.
- When order commonality is high enough, then batch picking of full cases and splitting the cases for sorting is efficient.

Source: W\&H Systems, Inc.

Source: Cleco Systems, http://www.cleco.nl/objects/images/sortation.jpg

Automated Sorting System

conveyor
from picking area

Sorting Systemes subs systens

- Induction:
- typically manual (humans)
- can be automated (robots or conveyors)
- Sortation:
- manual (humans) or
- automated conveyors (tilt-tray, bomb-bay, cross-belt)
- Packing:
- place items into shipping carton
- check for all items (quality assurance)
- add packing slip/invoice
- button up

Induction Process

- Paper makes claim that induction process is the critical process/sub-system.
- Tends to limit throughput of the system once sorter hardware is in place.
- Decisions:
- How many inductors?
- Where to place them at stations and within station?
- Objective:
- Would like to minimize cost (function of number of pickers and picking stations).
- Need to meet throughput requirements.

Notation

- $p_{i}=$ probability that inductor i can induct onto a moving conveyor $(i=1, \ldots, N)$
- $p_{i}=\lambda_{i} / s, \lambda_{i}<s$
- $\lambda_{i}=$ the induction rate of inductor i if working in isolation
- $s=$ speed of the conveyor
- $\lambda_{i}^{\prime}=$ the effective induction rate of inductor $i ; \lambda_{i}^{\prime} \leq \lambda_{i}<s$

Side-by-Side Inductor Interference

Side-by-Side Inductors

- $\lambda_{1}^{\prime}=\lambda_{1}$ since inductor 1 is never blocked
- What about inductor 2 ?
- Geometric Distribution (p): Mean number of trials until first success equals $1 / p$.
- Mean number of trials until inductor 2 ready to place an item on $=1 / p_{2}-1$.
- Mean number of trials until inductor 2 sees an empty tray $=$ $1 /\left(1-p_{1}\right)$.
- Add these together and take the inverse ... yields the probability that inductor 2 hits the next tray.
- Multiply by s and you have the effective induction rate of inductor 2: $\lambda_{2}^{\prime}=\left[\frac{1}{\lambda_{2} / s}-1+\frac{1}{1-\lambda_{1} / s}\right]^{-1} s$.

Side-by-Side Inductor Interference

Faster Inductor

- When one inductor is faster than the other, which inductor should be first?
- Can answer mathematically (see Result 1).

Faster Inductor

Split Inductors

Split Inductors

- Now both workers will experience blocking (not just the second inductor).
- Assume that items are equally-likely to be destined for any pack station.
- As a result, $1 / 2$ of the items will be sorted before arriving at the other station.
- $\lambda_{2}^{\prime}=\left[\frac{1}{\lambda_{2} / s}-1+\frac{1}{1-\lambda_{1}^{\prime} /(2 s)}\right]^{-1} s$
- $\lambda_{1}^{\prime}=\left[\frac{1}{\lambda_{1} / s}-1+\frac{1}{1-\lambda_{2}^{\prime} /(2 s)}\right]^{-1} s$
- $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\lambda^{\prime} \Rightarrow(3)$
- Result 2 tells us that SPL always does better than SBS for $\lambda<s$.

Split Results

Result 2: For two inductors each with nominal induction rate λ $(\lambda<s)$, the total effective induction rate of a split system is larger than that of a side-by-side configuration $\left(\Lambda_{S P L}^{\prime}>\Lambda_{S B S}^{\prime}\right)$.

Result 3: For two inductors working in a split configuration with nominal induction rates limited by the conveyor speed (i.e., $\lambda_{i}=s$, $i=1,2)$, the total effective induction rate is expressed as $\Lambda_{S P L}^{\prime}=\left(\frac{4}{3}\right) s$.

Result 4: For N inductors working in an equally spaced split configuration (with $B>N$ evenly distributed between the inductors) with nominal induction rates limited by the conveyor speed (i.e., $\lambda_{i}=s, i=1, \ldots, N$), the total effective induction rate is expressed as $\Lambda_{S P L}^{\prime}=\left(\frac{2 N}{N+1}\right) s$. Moreover, $\lim _{N \rightarrow \infty} \Lambda_{S P L}^{\prime}=2 s$.

Improvement with Split

Presorting to Improve Sorter Throughput

- With two stations and no presorting:

$$
\lambda^{\prime}=\left[\frac{1}{\lambda / s}-1+\frac{1}{1-\lambda^{\prime} /(2 s)}\right]^{-1} s
$$

- With two stations and presorting that leads to dropoff probability equal to $d(d>0.5)$:

$$
\lambda^{\prime}=\left[\frac{1}{\lambda / s}-1+\frac{1}{1-(1-d) \lambda^{\prime} / s}\right]^{-1} s
$$

- Note that this improves sorter throughput at the price of decreasing picking throughput.

Presorting to Improve Sorter Throughput

Approximate Model for Low Induction Variance

- Motivated by case where inductors found a rhythm.
- Did not see such "random" blocking as model would predict.
- Used an approximate queueing model based on lower bound and upper bound of throughput.
- Lower bound on throughput: Geometric Model.
- Upper bound on throughput: Finite Model.
- See paper for details (pp. 267-269).
- Approximation performed well (see Tables 1-4).

Table 1 Results for Two Side-by-Side Inductors

Simulation Experiment	AVG TBA Inductor		Total Intensity	VAR TBA Inductor		Total Induction				Simulated Half-Width 95\%	\% Error	
			Geometric Estimate			Finite Estimate	Approx. Estimate	Simulation				
	1	2		1	2	$\left(\Lambda^{G}\right)$	$\left(\Lambda^{F}\right)$	$\left(\Lambda^{A}\right)$	Estimate			
1	5	5		40.0\%	0.80	0.80	39.05	39.23	39.19	39.30	0.01	0.27\%
2	5	5	40.0\%	1.30	1.30	39.05	39.23	39.19	39.23	0.02	0.10\%	
3	5	5	40.0\%	2.40	2.40	39.05	39.23	39.19	39.21	0.03	0.07\%	
4	5	5	40.0\%	3.20	3.20	39.05	39.23	39.18	39.21	0.03	0.07\%	
5	5	5	40.0\%	3.60	3.60	39.05	39.23	39.18	39.21	0.03	0.06\%	
6	4	4	50.0\%	0.75	0.75	48.08	48.53	48.41	48.60	0.02	0.40\%	
7	4	4	50.0\%	1.50	1.50	48.08	48.53	48.40	48.50	0.04	0.21\%	
8	4	4	50.0\%	2.10	2.10	48.08	48.53	48.39	48.46	0.03	0.15\%	
9	4	4	50.0\%	2.55	2.55	48.08	48.53	48.38	48.45	0.04	0.14\%	
10	4	4	50.0\%	2.78	2.78	48.08	48.53	48.37	48.42	0.04	0.08\%	
11	3	4	58.3\%	1.00	0.75	55.55	56.41	56.09	56.33	0.03	0.41\%	
12	3	4	58.3\%	1.33	1.50	55.55	56.41	56.07	56.24	0.03	0.30\%	
13	3	4	58.3\%	1.60	2.10	55.55	56.41	56.05	56.19	0.04	0.25\%	
14	3	4	58.3\%	1.80	2.55	55.55	56.41	56.04	56.15	0.04	0.20\%	
15	3	4	58.3\%	1.90	2.78	55.55	56.41	56.03	56.08	0.05	0.08\%	
16	3	3	66.7\%	1.00	1.00	61.90	63.33	62.76	63.08	0.03	0.50\%	
17	3	3	66.7\%	1.33	1.33	61.90	63.33	62.73	62.94	0.04	0.34\%	
18	3	3	66.7\%	1.60	1.60	61.90	63.33	62.69	62.86	0.04	0.27\%	
19	3	3	66.7\%	1.80	1.80	61.90	63.33	62.67	62.81	0.05	0.22\%	
20	3	3	66.7\%	1.90	1.90	61.90	63.33	62.66	62.75	0.05	0.15\%	
21	2	4	75.0\%	0.75	0.75	70.00	72.22	71.03	71.14	0.03	0.16\%	
22	2	4	75.0\%	0.83	1.50	70.00	72.22	70.98	71.06	0.05	0.12\%	
23	2	4	75.0\%	0.90	2.10	70.00	72.22	70.93	70.94	0.04	0.01\%	
24	2	4	75.0\%	0.95	2.55	70.00	72.22	70.90	70.87	0.06	-0.05\%	
25	2	4	75.0\%	0.98	2.78	70.00	72.22	70.88	70.86	0.06	-0.03\%	
26	2	3	83.3\%	0.75	1.00	75.00	78.57	76.49	76.76	0.04	0.35\%	
27	2	3	833\%	0.83	1.33	75.00	78.57	76.42	76.56	0.05	0.19\%	
28	2	3	833\%	0.90	1.60	75.00	78.57	76.35	76.44	0.04	0.11\%	
29	2	3	83.3\%	0.95	1.80	75.00	78.57	76.31	76.30	0.05	-0.01\%	
30	2	3	83.3\%	0.98	1.90	75.00	78.57	76.28	76.26	0.06	-0.02\%	
31	2	2	100.0\%	0.75	0.75	83.33	90.00	85.68	85.79	0.03	0.13\%	
32	2	2	100.0\%	0.83	0.83	83.33	90.00	85.55	85.51	0.05	-0.05\%	
33	2	2	100.0\%	0.90	0.90	83.33	90.00	85.45	85.31	0.05	-0.16\%	
34	2	2	100.0\%	0.95	0.95	83.33	90.00	85.37	85.12	0.05	-0.29\%	
35	2	2	100.0\%	0.98	0.98	83.33	90.00	85.32	85.06	0.05	-0.31\%	

$\mathrm{TBA}=$ Trays Between Attempts. Average \% Error $=0.13 \%$.
Average (Absolute) \% Error $=0.18 \%$.

Table 2 Results for Two Split Inductors

Simulation Experiment			Total Intensity			Total Induction				Simulated Half-Width 95\%	\% Error
	Inductor			Inductor		Geometric Estimate $\left(\Lambda^{G}\right)$	Finite Estimate $\left(\Lambda^{F}\right)$	Approx. Estimate $\left(\Lambda^{A}\right)$	Simulation Estimate		
	1	2		1	2						
1	5	5	40.0\%	0.80	0.80	39.15	39.23	39.21	39.24	0.01	0.06\%
2	5	5	40.0\%	1.30	1.30	39.15	39.23	39.21	39.21	0.02	0.00\%
3	5	5	40.0\%	2.40	2.40	39.15	39.23	39.21	39.23	0.03	0.04\%
4	5	5	40.0\%	3.20	3.20	39.15	39.23	39.21	39.22	0.04	0.02\%
5	5	5	40.0\%	3.60	3.60	39.15	39.23	39.21	39.21	0.03	0.01\%
6	4	4	50.0\%	0.75	0.75	48.34	48.53	48.48	48.54	0.02	0.14\%
7	4	4	50.0\%	1.50	1.50	48.34	48.53	48.47	48.52	0.03	0.09\%
8	4	4	50.0\%	2.10	2.10	48.34	48.53	48.47	48.50	0.03	0.06\%
9	4	4	50.0\%	2.55	2.55	48.34	48.53	48.46	48.49	0.03	0.06\%
10	4	4	50.0\%	2.78	2.78	48.34	48.53	48.46	48.48	0.04	0.03\%
11	3	4	58.3\%	1.00	0.75	55.76	56.09	55.98	56.02	0.03	0.07\%
12	3	4	58.3\%	1.33	1.50	55.76	56.09	55.97	56.00	0.03	0.05\%
13	3	4	58.3\%	1.60	2.10	55.76	56.09	55.96	56.01	0.04	0.08\%
14	3	4	58.3\%	1.80	2.55	55.76	56.09	55.96	56.00	0.04	0.07\%
15	3	4	58.3\%	1.90	2.78	55.76	56.09	55.96	55.96	0.05	0.01\%
16	3	3	66.7\%	1.00	1.00	62.77	63.32	63.10	63.20	0.03	0.16\%
17	3	3	66.7\%	1.33	1.33	62.77	63.32	36.09	63.17	0.04	0.12\%
18	3	3	66.7\%	1.60	1.60	62.77	63.32	63.08	63.12	0.04	0.07\%
19	3	3	66.7\%	1.80	1.80	62.77	63.32	63.07	63.12	0.05	0.08\%
20	3	3	66.7\%	1.90	1.90	62.77	63.32	63.06	63.09	0.05	0.04\%
21	2	4	75.0\%	0.75	0.75	70.14	70.82	70.53	70.51	0.05	-0.02\%
22	2	4	75.0\%	0.83	1.50	70.14	70.82	70.51	70.49	0.04	-0.02\%
23	2	4	75.0\%	0.90	2.10	70.14	70.82	70.50	70.45	0.04	-0.06\%
24	2	4	75.0\%	0.95	2.55	70.14	70.82	70.49	70.44	0.06	-0.07\%
25	2	4	75.0\%	0.98	2.78	70.14	70.82	70.48	70.41	0.04	-0.10\%
26	2	3	83.3\%	0.75	1.00	76.22	77.35	76.77	76.80	0.04	0.04\%
27	2	3	83.3\%	0.83	1.33	76.22	77.35	76.75	76.74	0.05	-0.01\%
28	2	3	83.3\%	0.90	1.60	76.22	77.35	76.73	76.72	0.05	-0.01\%
29	2	3	83.3\%	0.95	1.80	76.22	77.35	76.71	76.67	0.06	-0.05\%
30	2	3	83.3\%	0.98	1.90	76.22	77.35	76.70	76.67	0.07	-0.04\%
31	2	2	100.0\%	0.75	0.75	87.69	89.90	88.47	88.49	0.04	0.02\%
32	2	2	100.0\%	0.83	0.83	87.69	89.90	88.42	88.41	0.06	-0.02\%
33	2	2	100.0\%	0.90	0.90	87.69	89.90	88.39	88.36	0.06	-0.03\%
34	2	2	100.0\%	0.95	0.95	87.69	89.90	88.36	88.30	0.06	-0.07\%
35	2	2	100.0\%	0.98	0.98	87.69	89.90	88.35	88.29	0.07	-0.07\%

TBA $=$ Trays Between Attempts. Average \% Error $=0.02 \%$.
Average (Absolute) \% Error $=0.05 \%$.

Table 3 Results for Three Side-by-Side Inductors

Simulation Experiment		G T		Total Intensity	VAR TBA			Total Induction				Simulated Half-Width 95\%	\% Error
	Inductor				Inductor			Geometric Estimate	Finite Estimate	Approx. Estimate	Simulation		
	1	2	3		1	2	3	$\left(\Lambda^{G}\right)$	$\left(\Lambda^{\text {F }}\right.$)	$\left(\Lambda^{\text {A }}\right.$)	Estimate		
1	5	5		60\%	0.80	0.80	0.80	56.78	57.77	57.39	57.68	0.02	0.50\%
2	5	5	5	60\%	1.30	1.30	1.30	56.78	57.77	57.38	57.44	0.02	0.09\%
3	5	5	5	60\%	2.40	2.40	2.40	56.78	57.77	57.36	57.32	0.02	-0.08\%
4	5	5	5	60\%	3.20	3.20	3.20	56.78	57.77	57.35	57.27	0.03	-0.13\%
5	5	5	5	60\%	3.60	3.60	3.60	56.78	57.77	57.34	57.24	0.04	-0.18\%
6	4	4	4	75\%	0.75	0.75	0.75	68.38	70.83	69.66	70.28	0.02	0.88\%
7	4	4	4	75\%	1.50	1.50	1.50	68.38	70.83	69.61	69.74	0.02	0.20\%
8	4	4	4	75\%	2.10	2.10	2.10	68.38	70.83	69.56	69.54	0.03	-0.03\%
9	4	4	4	75\%	2.55	2.55	2.55	68.38	70.83	69.52	69.45	0.04	-0.11\%
10	4	4	4	75\%	2.78	2.78	2.78	68.38	70.83	69.50	69.35	0.04	-0.22\%
11	3	3	3	100\%	1.00	1.00	1.00	83.52	90.85	86.07	86.76	0.04	0.79\%
12	3	3	3	100\%	1.33	1.33	1.33	83.53	90.85	85.94	86.13	0.04	0.22\%
13	3	3	3	100\%	1.60	1.60	1.60	83.52	90.85	85.83	85.74	0.05	-0.11\%
14	3	3	3	100\%	1.80	1.80	1.80	83.52	90.85	85.75	85.49	0.04	-0.30\%
15	3	3	3	100\%	1.90	1.90	1.90	83.52	90.85	85.71	85.38	0.06	-0.39\%
16	2	2	2	150\%	0.75	0.75	0.75	97.62	100.00	99.96	99.10	0.05	-0.87\%
17	2	2	2	150\%	0.83	0.83	0.83	97.62	100.00	99.84	98.87	0.04	-0.98\%
18	2	2	2	150\%	0.90	0.90	0.90	97.62	100.00	99.73	98.69	0.04	-1.06\%
19	2	2	2	150\%	0.95	0.95	0.95	97.62	100.00	99.65	98.57	0.05	-1.10\%
20	2	2	2	150\%	0.98	0.98	0.98	97.62	100.00	99.60	98.57	0.05	-1.05%

TBA $=$ Trays Between Attempts. Average \% Error $=-0.20 \%$.
Average (Absolute) \% Error $=0.46 \%$.

Table 4 Results for Four Side-by-Side Inductors

Simulation Experiment	AVG TBA Inductors	Total Intensity	VAR TBA Inductors	Total Induction				Simulated Half-Width 95\%	\% Error
				Geometric Estimate	Finite Estimate	Approx. Estimate	Simulation		
	1-4		1-4	$\left(\Lambda^{G}\right)$	$\left(\Lambda^{F}\right)$	$\left(\Lambda^{A}\right)$	Estimate		
1	5	80\%	0.80	72.62	75.70	74.05	74.82	0.02	1.03\%
2	5	80\%	1.30	72.62	75.70	74.02	74.22	0.03	0.27\%
3	5	80\%	2.40	72.62	75.70	73.96	73.80	0.03	-0.22\%
4	5	80\%	3.20	72.62	75.70	73.92	73.63	0.04	-0.39\%
5	5	80\%	3.60	72.62	75.70	73.90	73.56	0.04	-0.45\%
6	4	100\%	0.75	84.61	92.03	87.07	88.90	0.03	2.06\%
7	4	100\%	1.50	84.61	93.06	86.95	87.36	0.03	0.47\%
8	4	100\%	2.10	84.61	92.06	86.84	86.74	0.03	-0.11\%
9	4	100\%	2.55	84.61	92.06	86.76	86.42	0.04	-0.39\%
10	4	100\%	2.78	84.61	92.06	86.72	86.29	0.05	-0.50\%
11	3	133\%	1.00	95.92	100.00	98.47	98.87	0.01	0.41\%
12	3	133\%	1.33	95.92	100.00	98.33	98.12	0.02	-0.22\%
13	3	133\%	1.60	95.92	100.00	98.23	97.65	0.03	-0.59\%
14	3	133\%	1.80	95.92	100.00	98.14	97.39	0.02	-0.77\%
15	3	133\%	1.90	95.52	100.00	98.10	97.25	0.03	-0.88\%

TBA $=$ Trays Between Attempts. Average \% Error $=-0.02 \%$.
Average (Absolute) \% Error $=0.58 \%$.

Conclusions

- Concepts:
- When does it pay to split induction stations?
- When does it make sense to presort the items?
- When do you need to use approximate model (with queueing approximation)?
- Skills:
- Calculate the throughput of a side-by-side system with 2 inductors (see pg. 12).
- Calculate the throughput of a split system with 2 inductors (see pg. 12).
- Calculate the maximum throughput of a system with N induction stations.
- Calculate the throughput of a split system with 2 inductors and presorting (see pp. 15-16).
- Extension:
- Alluded to more than two inductors ... how would you modify the models?

