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The measure f of flow dominance is a number between 0 and 1 that indicates whether no dominant
flows occur in a from-to matrix (the case where f = 1) or whether there are dominant flows (the case
where f = 0).

If there are M processes, the from-to matrix is of order M ×M and each entry is denoted by wij where
i = 1 . . . M, j = 1 . . . M . There are M2 entries in the from-to matrix. Recall that wij is a result of
product volumes, routings, and equivalency factors.

The coefficient of variance of the matrix is:
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The normalized coefficient of variance f ′ is given by:
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We can find the normalized coefficient of variance of two matrices, one with nearly all equal flows and
another with a few dominant flows. For example, the following 4× 4 matrix L has nearly all equal flows,
and its normalized coefficient of variance, fL is a lower bound on f ′. Except for the diagonal elements
which are 0, all other elements have a value of 1.

L =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



An M ×M matrix such as L has
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equation 1, we obtain:
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We now consider a matrix such as the 4 × 4 matrix U below which has a few dominant flows. Most
of the matrix has a flow of zero. However, all elements of the first diagonal to the right of the main
diagonal have flows of 1. If the from-to matrix resembles U, it is very easy to build a layout for the plant.
The department flows are from 1 → 2 → 3 → . . . and therefore a linear or U-shaped layout might be
very suitable.

U =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



Note that an M ×M matrix such as U has
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in equation 1, we obtain:
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For any from-to matrix, we now define its flow dominance measure f as follows:

f =
fU − f ′

fU − fL

(4)

Clearly, f is a number between 0 and 1. If the matrix has highly dispersed flows such as in matrix L,
f ′ → fL and f → 1. If the matrix has dominant flows such as in matrix U, f ′ → fU and f → 0

It is said that:

• If f → 0, then a product layout is suitable.

• If f → 1, then any layout is appropriate from a qualitative perspective which implies that qualitative
factors should be investigated.

• if 0� f � 1.0, then either a process or group layout might be appropriate.
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