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Abstract 

Within a cross-dock, the assignment of trucks to dock-doors and the 
scheduling of trucks to be processed are two major operational decisions. 
Conventionally, assignment and scheduling decisions are made sequentially. 
However, solving the two problems sequentially can lead to sub-optimal 
solutions because the objectives of the two problems are in conflict with each 
other. To gain further insights, we create an integrated model which is capable 
of simultaneously scheduling and assigning trucks at cross-docks. We contrast 
the integrated model with a sequential model which first schedules trucks for 
processing and then assigns them to dock-doors. Experiments demonstrate that 
the integrated model can produce superior solutions, despite that it is 
computationally more expensive.   

 
1. Introduction 

Cross-docks are facilities that allow the consolidation of shipments from multiple origins to a 
single destination with minimal storage of shipments within the cross-dock facility [6], [7]. 
Incoming shipments and their departure are synchronized such that the shipments remain 
within the cross-dock usually for less than a day and often for less than an hour [6], [7].  

The operations at a cross-dock facility require numerous decisions that can be divided 
into strategic, tactical, and operational levels [7], [16], [22]. Decisions about the shape of the 
cross-dock, the number of dock-doors, and the means of moving shipments within the cross-
dock belong to the strategic level [16]. Service modes of the dock-doors are decided at the 
tactical level. A dock-door can function as dedicated inbound, dedicated outbound or flexible 
(i.e., mixed mode) dock-door. Unlike inbound or outbound dock-doors, mixed mode dock-
doors are capable of processing both inbound and outbound trucks at different points in time 
[16]. Bodnar et al. [4] show that a cross-dock with flexible dock-doors can achieve the same 
operational performance compared to a cross-dock with only dedicated inbound and outbound 
dock-doors, but with fewer dock-doors. Other tactical level decisions within a cross-dock 
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concern the use of a temporary storage area and the determination of the amount of personnel 
and equipment that need to be available at the cross-dock. 

At the operational level, the assignment of trucks to dock-doors and the scheduling of 
trucks to be processed at the dock-doors are the two major decisions. In the assignment 
problem, trucks are assigned to specific dock-doors with the objective to minimize the internal 
travel distances within the facility [3], [10], [14], [19], [20]. This is an important objective 
because cross-docks can be large with significant distances between dock-doors. The reduction 
of travel distances has a positive impact on productivity by reducing labor and equipment 
usage, and it increases customer service by reducing the time required to complete the 
transshipment processes [3]. The assignment of trucks to dock-doors can also be done at a 
tactical level. In such a case, all trucks originating from or destined to certain locations are 
assigned to the same dock-door throughout the tactical planning period. In this paper, we only 
refer to assignment decisions at the operational level. 

Cross-dock scheduling involves the sequencing of trucks for processing when the number 
of trucks is larger than the number of dock-doors. In contrast to the assignment problem, 
internal travel distances within the cross-dock are not considered in the scheduling problem. 
Schedules can be created with the objective to minimize delayed shipments [6], lost shipments 
[17], makespan [2], [8], [21], [25], temporary storage [12], temporary storage and tardiness of 
outbound trucks [4], or to maximize throughput [18]. 

 The scheduling of inbound and outbound trucks without considering the assignment of 
trucks to dock-doors would suffice for small cross-dock facilities. This is because the travel 
times between dock-doors are small. Consequently, the sum of the travel distances from 
solutions to the assignment problem might not differ much compared to the total travel distance 
when trucks are assigned to dock-doors on a first-come-first-assigned basis.  

However, in larger cross-dock facilities with a high truck-to-dock-door ratio, it could be 
beneficial to solve the scheduling and assignment problem of trucks in an integrated manner. 
By doing so, inbound and outbound truck pairs can be docked closer to each other which leads 
to lower internal travel distances without compromising scheduling objectives.   

Scheduling and assignment problems have mostly been tackled sequentially within the 
cross-docking context because of the inherent complexity in each of the two problems. 
However, significant gains may be realized by integrating both problems. We develop two 
models to evaluate the differences between solving the integrated scheduling and assignment 
problem versus the sequential approach. The first model considers the scheduling and 
assignment problem in an integrated manner. While, the second model first schedules inbound 
and outbound trucks and then assigns them to dock-doors. Both models aim to minimize 
internal travel distances within the cross-dock, delays of outbound trucks, and usage of 
temporary storage. In addition, we compare both models extensively on randomly generated 
instances to gain insights into the trade-offs between the integrated and sequential model.  

 
2. Literature Review 

Cross-docking has received significant research attention with numerous papers on the topic in 
recent years. In this review, we only refer to works in the cross-docking literature where both 
the scheduling and assignment of trucks are studied. For other aspects of cross-docking and 
related decision problems, we refer to overviews by Agustina et al. [1], Boysen & Fliedner [6], 
Van Belle et al. [22], Buijs et al. [7], and Ladier & Alpan [16]. 
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Chmielewski et al. [9] consider a less-than-load (LTL) truck terminal where inbound 
shipments are consolidated. Inbound trucks unload items, which are loaded onto outbound 
trucks. The objective of the problem is to schedule and assign the inbound and outbound trucks 
such that the travel distance within the truck terminal is minimized as well as the loading and 
unloading time. Each outbound truck (or destination) is assigned to a unique dock-door on a 
tactical basis for a period of six months or more. The problem is formulated as a multi-
commodity flow problem with side constraints. Solution techniques based on column 
generation and evolutionary algorithms are also provided. 

In a large cross-dock where the number of trucks is larger than the number of avail-able 
dock-doors, the model presented by Chmielewski et al. [9] is not applicable. Each outbound 
truck receives a unique dock-door in their model, and the assignment of the outbound truck to 
the dock-door persists over the entire tactical planning horizon. When there are more trucks 
than dock-doors there will not be enough dock-doors to assign each truck. Furthermore, the use 
of a temporary storage area within the cross-dock is also not considered. 

Boysen [5] presents a cross-dock scheduling model for a cross-dock with fixed mode 
dock-doors without temporary storage. The cross-dock of concern is used for the transportation 
of refrigerated food products. The entire planning period is broken into discrete time periods. 
Each inbound truck is processed within exactly one time period. Since every inbound truck 
arrives fully loaded and carries identically sized items, the processing times for all inbound 
trucks are considered to be deterministic and equal. 

The model can be adapted for three objectives: the minimization of flow times for 
outbound trucks, the minimization of processing times for outbound trucks and the 
minimization of the tardiness for outbound trucks. Dynamic programming and simulated 
annealing based algorithms are presented as solution techniques to the problem. The solution 
techniques are tested on instances with two to five inbound dock-doors and four to eight time 
periods. 

The model presented by Boysen [5] is most suitable for small fresh food cross-docks 
where the same temperature has to be maintained throughout the supply chain. In contrast, 
larger cross-docks handle a vast variety of products with different temperature requirements. 
Using a temporary storage might not be completely prohibited although it is unfavourable 
because of the prolonged temperature shock. This is especially the case for fresh and ambient 
food products. Furthermore, the model only considers fixed mode dock-doors. More 
importantly, internal travel distances are not part of any objectives.  

Van Belle et al. [23] present a model that simultaneously assigns and schedules inbound 
and outbound trucks. The dock-doors operate in fixed modes only. The processing time of a 
truck is proportional to the number of shipments in the truck. The authors consider a temporary 
storage area with infinite capacity. Personnel and equipment are sufficiently available for any 
necessary transfers of items between dock-doors within the cross-dock. The objective is to 
minimize the sum of internal travel distances and delays in truck departures of both inbound 
and outbound trucks.  The problem is formulated as a mixed integer linear program (MILP) and 
a tabu search based solution approach is provided. Solutions obtained from the tabu search 
procedure are then fed into a CPLEX solver to make further improvements. 

In the model of Van Belle et al. [23], shipments can be transferred through a temporary 
storage area without being penalized in the objective function. In reality, transfers through a 



 

4 
 

storage area incur double handling of shipments and should be included to the objective 
function [4]. Additionally, flexible dock-doors are not considered by the authors. In all of the 
numerical tests, the number of inbound and outbound dock-doors is limited to three. These 
instances are too small to guarantee that the solution approach is applicable to real-sized 
instances. 

Hermel et al. [14] consider a truck terminal with an equal number of trucks and dock-
doors. The scheduling and assignment of trucks is done sequentially.  First, the inbound and 
outbound trucks are clustered into disjoint sets according to the flows of materials between 
them. The trucks are then assigned to dock-doors with the intention to minimize the total travel 
distance. Clustering inbound and outbound trucks into disjoint sets reduces the complexity to 
solve the assignment problem of trucks to dock-doors, because the assignment problem can be 
solved for each set separately. This reduces the problem size and the solution space. Next, the 
workforce is scheduled as a multi-mode resource constrained project scheduling problem. 
Finally, the trucks are scheduled according to the workforce plans. The overall objective of the 
problem is to minimize the sum of travel distances and the makespan. 

The solution framework presented by Hermel et al. [14] is only applicable to a cross-dock 
with an equal or fewer trucks and dock-doors. Furthermore, in the case when all trucks are 
connected to each other through material flows, the clustering of trucks into small disjoint sets 
is not possible. If this is the case, the assignment problem has to be solved for the entire 
problem instance at the same time. Another limitation of this model is that it only considers 
fixed mode dock-doors. 

To the best of our knowledge, no work exists that simultaneously schedules and assigns 
trucks in cross-docks with flexible dock-doors and temporary storage with the objective to 
minimize internal travel distances, usage of temporary storage, and delays of outbound trucks. 
Furthermore, no existing work has investigated the benefit of integrating the scheduling and 
assignment decisions versus solving both problems sequentially. Table 1 presents an overview 
of the most relevant work in the existing literature and our contribution.   

 
Table 1: Comparison of relevant work on truck scheduling and dock-door assignment. 

 Cross-dock Features  Objectives 

Publications 
Flexible 
Dock-
doors 

Temporar
y Storage 

 Travel 
Distance 

Outbound 
Delays 

Temporary 
Storage 

Chmielewski et al. 
(2009)  �   

�    

Boysen (2010)     �   
Van Belle et al. (2012)  �   �  �   
Hermel et al. (2016) �    �    
Our paper �  �   �  �  �  

3. Problem Description 
We consider a cross-dock that serves a set of inbound and outbound trucks represented by 𝐼 and 
𝑂, respectively. Each inbound truck contains shipments that are designated to a specific set of 
outbound trucks. For each unit load in an inbound truck, information about the designated 
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outbound truck is known beforehand. Interchanging unit loads between outbound trucks is not 
permitted. The amount of loads transferred between inbound and outbound trucks are presented 
in a |𝐼|×|𝑂| transhipment matrix where entry 𝑓_𝑖𝑗 indicates the number of unit loads in inbound 
truck  𝑖 ∈ 𝐼 destined for outbound truck 𝑗 ∈ 𝑂. 

The cross-dock has a given number of dock-doors, divided in inbound, outbound, and 
flexible dock-doors, indicated by the sets 𝐷_𝐼, 𝐷_𝑂, and 𝐷_𝐹 respectively. Only inbound trucks 
can be unloaded at inbound dock-doors, and only outbound trucks can be loaded at outbound 
dock-doors. However, flexible dock-doors can be used for both unloading of inbound trucks 
and loading of outbound trucks.  Once an inbound truck 𝑖 ∈ 𝐼 is assigned to a flexible dock-
door, the dock-door serves as an inbound dock-door until the truck leaves, i.e., all inbound unit 
loads from the truck are unloaded, after which the dock-door can be used again as an inbound 
or outbound dock-door. Likewise, a flexible dock-door assigned to an outbound truck 𝑗 ∈ 𝑂 is 
designated as outbound dock-door between the docking and departure of the fully loaded 
outbound truck.  

Only when both inbound and outbound trucks are docked at the same time, direct dock-to-
dock transfers are possible between them. Otherwise, if an inbound truck 𝑖 ∈ 𝐼 is unloaded and 
departs before outbound truck 𝑗 ∈ 𝑂 is docked where 𝑓_𝑖𝑗 > 0 , the unit loads 𝑓_𝑖𝑗 have to be 
routed via the temporary storage area.  

The usage of the temporary storage area incurs cost 𝜂 per unit load which includes the cost 
of internal transportation and additional handling. Numerous storage policies can be employed 
to store unit loads temporarily at the temporary storage areas. Provided that the assignment of 
inbound and outbound trucks to dock-doors is given, Vis & Roodbergen [24] provide a 
methodology to choose the optimal location to temporarily store shipments. However, the 
method becomes inapplicable when the assignment of inbound and outbound trucks to dock-
doors is part of the optimization problem. Furthermore, we observe that shipments are stored 
using the closest open location storage in unit-load cross-docking, i.e., the unit loads are stored 
in the nearest empty location. Internal travel distances to and from the temporary storage area 
and the personnel and equipment cost of double handling of unit loads using such temporary 
storage policy can be approximated using the random storage policy, where the probability of a 
shipment being stored temporarily in any of the locations in the temporary storage area is 
equally likely [11]. 

The distance between two dock-doors,  𝑘 and 𝑝  is indicated by 𝑚_𝑘𝑝. In case of a direct 
dock-to-dock transfer, each unit load accrues cost 𝛽 which includes the cost of handling and 
transporting unit loads over a unit distance. 𝛽 can be approximated by considering the 
personnel and equipment time taken to handle and transport each unit load over a unit distance.  

The planning horizon is divided into a set of 𝑇 time periods of equal length. The length of 
each time period is determined by the expected time required to process and unload inbound 
trucks [5]. In unit load cross-docking with evenly filled inbound trucks, the amount of time 
required to process and unload inbound trucks is approximately the same [5]. Furthermore, we 
assume that the cross-dock facility has enough personnel and equipment to perform all 
transshipments within one time period. 

The arrival and departure times of a truck 𝑖 ∈ 𝐼 ∪ 𝑂 are given and denoted in terms of 
time windows by 𝑟_𝑖 and 𝑑_𝑖, respectively. 𝑟_𝑖 and 𝑑_𝑖 coincide with the beginning or the end 
of the discrete time periods.  The cross-dock operator has information on the arrival and 
departure period of each truck. Since we consider a static problem, any deviations in arrival 
times can have an impact on the feasibility of our solutions in practice. Historical arrival data 
can be used to estimate the deviation in arrival times in order to create robust time windows [4]. 
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Additionally, some slack can be built into the time windows to ensure that the trucks arrive at 
the beginning of the arrival time period.  

Inbound and outbound trucks cannot be processed before their arrival period. Inbound 
trucks have to be unloaded completely within the given time window. However, the loading of 
an outbound truck can be delayed beyond its due time while accruing tardiness cost, denoted 
by 𝛾, for each time period the outbound truck is delayed. Particularly in retail distribution, 
outbound delays can be expensive because of tight time window restrictions for the delivery at 
retail stores. Outbound delay cost 𝛾 can be estimated by considering the additional cost of the 
outbound truck and truck driver, and the cost at the retail stores for not respecting the time 
window. The latter can be represented by the cost of additional staff to unload the unit loads or 
penalties payable to city authorities for the breach of time windows.   

Each inbound and outbound truck has to remain docked for a minimum of 𝑔 and ℎ time 
intervals, respectively. These minimum docking times represent the amount of time that is 
required to dock a truck, perform load transfers and administrative processing activities at the 
dock-door.  

We assume that internal resources within the cross-dock are infinite. We also assume that 
enough space is available in the cross-dock to avoid congestion. Preemption of trucks is not 
allowed, i.e., once trucks are docked they must be fully loaded or unloaded at the same dock-
door before departing.  

The problem description outlined here is largely inspired by the cross-dock operations of a 
Dutch retailer. However, it can easily be extended to any large cross-dock with a high truck-to-
dock-door ratio.  

4. Integrated Model  
We create an integrated integer programming model which jointly assigns and schedules both 
inbound and outbound trucks to dock-doors. The objective of the model is to minimize the sum 
of the weighted delays of outbound trucks, direct travel distances between dock-doors, and the 
usage of temporary storage indicated by the travel distance between the dock-doors and the 
temporary storage area. The weights in the model are 𝛽,  𝜂 and 𝛾 , which indicate the cost of 
per unit travel distance per unit load, cost of usage of temporary storage per unit load and the 
cost of the delay per outbound truck per time period, respectively.  

In this time discrete model, the main decision variables are binary and indicate at what 
time period and at which dock-door a particular truck is docked. Other auxiliary variables 
indicate the completion time of the (un)loading of each truck and the number of (un)loaded unit 
loads for each truck at each time period. Additionally, the model also includes variables that 
indicate for each time period the number of units at the temporary storage area that are 
unloaded from a particular inbound truck and is destined to be loaded to a particular outbound 
truck.   

The constraints in the model are the same as outlined in the problem description. In brief, 
the constraints ensure that (i) each truck is assigned to only one dock-door; (ii) a dock-door at 
any particular time period is only assigned to one truck; (iii) inbound and outbound trucks are 
only assigned to appropriate dock-doors; (iv) inbound and outbound trucks can only be 
processed after their arrival; (v) within the planning horizon each inbound and outbound truck 
has to be completely unloaded or loaded, respectively; (vi) direct dock-to-dock transfers are 
only possible if both inbound and outbound trucks with unit loads flow between them (i.e., 
𝑓_𝑖𝑗 > 0) are docked at the same time period; (vii) unit loads have to be sent to the temporary 
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storage area if the outbound truck is not docked while the inbound truck is scheduled to depart 
in the next time period; (viii) all units in the storage area need to be loaded before the end of the 
planning horizon. It is possible that some unit loads from an inbound truck can be sent directly 
to outbound trucks that are docked at the same time period as the inbound truck and the 
remaining unit loads that are designated to be loaded onto outbound trucks that are not docked 
while the inbound truck is docked have to go to the temporary storage area; (ix) each truck has 
to be processed for a minimum number of time periods to account for administrative and 
transportation activities; and (x) no preemption of trucks is allowed.   

Some of the decision variables in the integrated model interact with each other non-
linearly. Therefore, in addition to the original integrated model, we need to create a linear 
version by introducing additional variables which capture the same interaction as the decision 
variables in the non-linear formulation. 

5. Sequential Scheduling and Assignment 
The sequential approach decomposes the integrated problem into distinct scheduling and 
assignment problems. Firstly, we create an integer programming model that creates schedules 
for inbound and outbound trucks. Secondly, an assignment model assigns trucks to dock-doors 
while the schedule when the trucks need to be docked is given.  

5.1 Scheduling Problem 

The first model schedules when all inbound and outbound trucks need to be docked. The 
objective function in this stage only captures the scheduling objectives of the integrated model, 
which is to minimize the delay of outbound trucks and the usage of the temporary storage area.  

The main variables in the model represent the times when each inbound (outbound) truck 
starts and ends unloading (loading). Compared to the decision variables in the integrated 
model, these variables do not have an additional index that specifies the docking location of the 
truck. This drastically reduces the number of variables in the model. Other auxiliary variables 
track the number of loaded and unloaded unit loads for each inbound and outbound truck at 
each time period and the number of unit loads between trucks at the temporary storage area. 
Similar to the integrated model, direct shipments are only possible when both the inbound truck 
and the outbound truck with unit load flows between them are docked at the same period. If an 
inbound truck departs before the outbound truck arrives that should receive unit loads from this 
inbound truck, then the designated unit loads need to be temporarily stored until the outbound 
truck is docked.  

The assumptions and constraints are equivalent to those in the integrated model. 
However, their formulations are less involved. Namely, the number of constraints and variables 
is reduced as we do not track the exact docking position of each truck. The original formulation 
of the scheduling model suffers from the same non-linear formulations as Section 4, which we 
address by introducing additional linearizing variables.  

5.2. Assignment Problem 

The schedule that is generated by the scheduling model is used as input for the assignment 
stage. The assignment model allocates trucks to dock-doors with the objective to minimize the 
weighted travel distances of direct dock-to-dock transfers between inbound and outbound 
trucks.    
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 The decision variables are binary and indicate whether a certain inbound or outbound truck 
is docked at each particular dock-door. The constraints in the model ensure that each truck is 
assigned to an appropriate dock-door, i.e., inbound, outbound or flexible dock-door, when the 
truck needs to be docked according to the schedule. Furthermore, the constraints in the model 
also ensure that once a truck is assigned to a dock-door it has to remain there for the time 
periods as indicated by the schedule.  

6. Computational experiments 
The integrated model and the sequential model are implemented in Gurobi 6.0.3 through 
Python interface on an i7-3520M CPU 2.9 GHz machine with 8 GB RAM. The integrated 
model as well as each of the sequential models are run for a maximum of 1,800 seconds. For 
consistency, all models are run with one CPU thread. The creation of the test instances is 
explained in Section 6.1 and the actual numerical results in Section 6.2. 
 
6.1. Instances 
The instances for the computational experiments are created according to the approach taken by 
Konur & Golias [15] and Gue [13]. Bodnar et al. [4] do the same. The planning horizon has a 
length of 12 hours and is divided in 16 intervals of 45 minutes. 

6.1.1. Inbound and outbound trucks 
The number of inbound and outbound trucks in each instance is the same, i.e., |𝐼| = |𝑂|. 

We limit the number of inbound and outbound trucks in the instances to only 10 trucks to 
increase the chances that both models find an optimal solution such that we can compare the 
outcome of the two models.  

We set the difference between the arrival and departure time of each truck, i.e. the time 
window, to either 2 or 3 periods to test the impact of the length of these time windows. The 
actual start and end time of each window is randomly generated as suggested by Konur and 
Golias [15]. A midpoint for the time window of each truck is randomly chosen from the 
discrete uniform U[1,16] distribution. Next,  and  are set such that the average of the two 
values equals the midpoint and the difference equals the given length of the time window. If 
𝑟_𝑖 < 1 or 𝑑_𝑖 > 16 , the arrival and departure windows are adjusted accordingly to fall within 
the planning horizon.  

The transshipment matrix between inbound and outbound trucks is generated according to 
the procedure proposed by Gue [13]. The number of outbound destinations for each inbound 
truck is chosen randomly from a discrete uniform distributions U[3,5] or U[5,7], i.e., the 
inbound trucks supply unit loads to 4 or 6 outbound trucks on average. The outbound trucks 
that receive the unit loads from the inbound truck are chosen randomly. The number of unit 
loads in each truck is set to 24, which is the number of standard Western European pallets in a 
trailer load [4]. To ensure that each inbound and outbound truck has 24 pallets each, we solve a 
MILP problem for each |𝐼| = |𝑂| transshipment matrix. The problem allocates values to the 
cells in the transshipment matrix such that the sum of each row and column equals 24 and the 
cells that should have non-zero entries are the same as determined randomly for each inbound 
truck using the given probability distributions.  

As by Bodnar et al. [4], we generate the transshipment matrices and truck schedules 
independently. Furthermore, we consider that the minimum processing time for all inbound and 
outbound trucks equals one time period. 
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6.1.2. Dock-door layout 

We consider a ‘U’-shaped cross-dock with either 5 or 15 dock-doors on the same side of 
the facility.  Smaller cross-docks with fewer dock-doors exist in practice. However, the impact 
of internal travel distances can be more profound in bigger cross-docks. Gue [13] reports cross-
docks with 300 dock-doors. In such large cross-docks, the impact of travel distances can be 
enormous and the differences between the solutions of the integrated and sequential model can 
be significant. However, we can only expect that both models converge to optimal solutions for 
small cross-docks. Next, the mode of each dock-door needs to be selected. Each door can be 
dedicated to either inbound or outbound trucks or it can be a flexible dock-door. A large 
number of layout combinations are possible even with only five or fifteen dock-doors. To gain 
some insights, we consider a limited number of configurations for the experiments. 

In the instances with 15 dock-doors, the first layout, L1, is based on a cross-dock facility 
of a Dutch retailer. The three dock-doors in the middle (i.e., dock-doors 7 until 9) operate in a 
dedicated inbound mode and the remaining dock-doors on either side operate as outbound 
dock-doors. In the second configuration, L2, the third outbound dock-door is changed to a 
flexible dock-door. In the third layout, L3, one additional flexible dock-door is introduced 
compared to L2.  

L4, L5, and L6 represent the dock-door layout in the cases with 5 dock-doors. In L4, the 
center dock-door is an inbound dock-door and the other two dock-doors on either side are 
outbound dock-doors. L5 replaces one of the outbound dock-doors next to the inbound door of 
L4 to a flexible dock-door. Finally, in L6, both outbound dock-doors on either side of the 
inbound dock-door of L4 are replaced by flexible dock-doors. Table 2 gives an overview of the 
six different layout configurations. 

The distance between the adjacent dock-doors in each layout is 3.6 meters, which is the 
length of 3 pallets. We disregard the distance from the truck to the staging lane, since this part 
of the internal transportation is constant for all movements of unit loads regardless of any 
solution.  
 
 
 
 
 

Table 2: Dock-door layouts. 

Configuration Layout* 
L1 

 
|𝑜|𝑜|𝑜|𝑜|𝑜|𝑜|𝑖|𝑖|𝑖|𝑜|𝑜|𝑜|𝑜|𝑜|𝑜|	

L2 |𝑜|𝑜|𝑓|𝑜|𝑜|𝑜|𝑖|𝑖|𝑖|𝑜|𝑜|𝑜|𝑜|𝑜|𝑜|	
L3 |𝑜|𝑜|𝑓|𝑜|𝑜|𝑜|𝑖|𝑖|𝑖|𝑜|𝑜|𝑜|𝑓|𝑜|𝑜|	
L4 |𝑜|𝑜|𝑖|𝑜|𝑜|	
L5 |𝑜|𝑜|𝑖|𝑓|𝑜|	
L6 |𝑜|𝑓|𝑖|𝑓|𝑜|	

* i - inbound dock-door, o - outbound dock-door, f - flexible dock-door 
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6.1.3. Weighted Costs 

The weights for the direct dock-to-dock travel, usage of temporary storage and delays of 
outbound trucks can be estimated as described in Section 3. However, the trade-offs between 
the sequential model and the integrated model in terms of computation time and solution 
quality can be different for different weights. To analyze these trade-offs, we consider different 
combinations of weights for each of the instances we solve: 

● 𝛽 𝜖 {1} 
● 𝜂 𝜖 {10, 50} 
● 𝛾 𝜖 {100, 500} 

6.2. Numerical results 

The performance of the integrated and sequential model is shown in Table 3 and 4 for 
the instances with 5 and 15 dock-doors, respectively. The results show that the integrated 
model can produce better solutions compared to the sequential model. Among the 96 instances 
we test, the solutions generated by the integrated model outperform the sequential model by as 
much as 6.5 percent. On average, the integrated solution is 0.52 percent better than the 
sequential solution. However, the integrated model was not able to converge within 1,800 
seconds for 44 instances. In 7 instances, the sequential model outperformed the integrated 
model within the runtime limit. In the worst case, the integrated solution was 11.6 percent 
worse than the sequential solution found within the time limit.    

For the 48 instances we tested with 5 dock-doors, shown in Table 3, the integrated 
solution outperforms the sequential solution by at most 6.5 percent. In 33 of the 48 instances 
some savings are realized. However, the majority of integrated solutions, 24 out of 48, only 
differ around 1 percent with the sequential solutions. In 12 instances, the integrated model is 
not able to converge to optimality within 1,800 seconds. 

When the number of dock-doors is increased to 15, the largest savings is 4.3 percent, as 
indicated in Table 4. In these 48 instances, the integrated model produces optimal solution 
within the time limit on 16 occasions only. As the number of dock-doors increases, the problem 
size increases and the model requires more time to converge to an optimal solution.  

When the ratio of the direct travel cost between the dock-doors is higher,(𝛽/𝜂)/(𝛾 ) =
  (1/10)/100, the integrated model produces much better solutions compared to the sequential 
model.  With these ratios, direct dock-to-dock transfers become more relevant and it could be 
better to postpone the processing of outbound trucks, possibly even with delays, such that 
inbound and outbound trucks can be assigned closer together. The highest savings generated by 
the integrated model for this ratio is 4.3 percent and the average savings is 1.99 percent.  

In contrast, with (𝛽/𝜂)/(𝛾 ) =   (1/50)/500, indicating that the direct dock-to-dock 
transfer is significantly cheaper compared to the usage of the temporary storage area or delays 
of outbound trucks, the integrated solutions do not differ significantly from sequential 
solutions. The highest savings in this case is 1 percent and the average savings is 0.3 percent. 
When the direct dock-to-dock travel is significantly cheaper compared to the cost of temporary 
storage and delays of outbound trucks, scheduling objectives are more important than the 
assignment objectives. Therefore, the additional gains that can be made by using the integrated 
model can be insignificant.  

In all instances, the integrated model requires more time to find the optimal solution 
compared to the sequential model. The integrated model has significantly more variables and 
constraints. As a result, the solver requires significantly more time to generate good solutions. 
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The sequential model converges in 91 of the 96 instances. In contrast, the integrated model 
produces optimal solutions for only 52 instances. 

The impact of the length of time windows and the average number of outbound trucks 
per inbound truck is discernible. The integrated and sequential models take longer to converge 
when the length of the time window increases or when the average number of outbound trucks 
per inbound truck increases. In the former case, the solver requires more time to parse through 
more feasible solutions. In the latter case, the increase in run times can be explained by the 
additional flows that the model has to handle. These results are consistent with previous 
observations in the literature [4]. 

As the number of flexible dock-doors increases, the sequential model and the integrated 
model produce superior results. However, they require more time to converge. Similarly, the 
quality of the solutions for both models also increases with additional flexible dock-doors. 
These dock-doors provide additional flexibility and help remedy bottle necks during periods of 
peak demand for (un)loading.  

7. Conclusion 

In this paper, we present two models to schedule and assign inbound and outbound trucks in a 
cross-dock. The first model solves both problems in an integrated manner while the second 
sequential model decomposes the problem first into a scheduling problem and then into an 
assignment problem.  

Additionally, we test both models for a number of random test instances. The results 
indicate that the integrated model can provide superior solutions compared to the sequential 
model, at the expense of larger computational requirements. Depending on the context, 
integrated models might not offer significant gains compared to the sequential model. If the 
cost of a direct dock-to-dock transfer of unit loads is significantly cheaper than the usage of a 
temporary storage area and the delay cost of outbound trucks, then most of the realizable 
savings can be achieved by solving the scheduling problem of the sequential model. The 
additional savings that can be made by solving the integrated model can be very little and 
unjustified in the face of large computation times. However, with an increase in the direct 
dock-to-dock transfer costs, integrated solutions consistently outperform sequential solutions. 
Delaying the processing of outbound trucks can facilitate better assignments of inbound and 
outbound trucks which is not possible with the sequential model. As a result, larger savings can 
be realized with the integrated model.  

The savings from the integrated model could be significant for heavily utilized, large 
cross-docks with numerous flexible dock-doors. However, each of these features increase the 
complexity of the integrated model significantly. For real sized problems and operational 
applications, commercial solvers cannot be expected to produce good solutions within a 
reasonable computation time. Therefore, it is worthwhile to adopt efficient heuristics to the 
integrated model.  

The next phase of this research will adopt computationally efficient metaheuristics for the 
integrated model to tackle real sized instances. Additionally, as a case study, the solution 
methodology will be applied to the cross-dock operations of a retailer. Before we can make 
methodological recommendations to cross-dock operators, this case study will test the validity 
and applicability of the model and the solution quality of the heuristics.  

.  
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Table 3 Experiment results with 5 dock-doors. 

 𝛽 = 1, 𝜂 = 10, 𝛾 = 100	 𝛽 = 1, 𝜂 = 50, 𝛾 = 100	 𝛽 = 1, 𝜂 = 10, 𝛾 = 500	 𝛽 = 1, 𝜂 = 50, 𝛾 = 500	
t.w. 𝑑_𝑖 − 𝑟_𝑖 = 2	 𝑑_𝑖 − 𝑟_𝑖 = 2	 𝑑_𝑖 − 𝑟_𝑖 = 2	 𝑑_𝑖 − 𝑟_𝑖 = 2	

 Integrated Sequential Integrated Sequential Integrated Sequential Integrated Sequential 
layout obj. time ∆(%) time obj. time ∆(%) time obj. time ∆(%) time obj. time ∆(%) time 
(a) no. of trucks = 20, average number of  destinations per inbound truck = 4         

L4 3857 61.38 2.1 1.94 5897 177 0.0 3.75 14257 10 0.6 0.46 16297 75.78 0.0 0.96 
L5 3612 142.83 5.0 13.47 5493 1419 2.7 38.31 13216 19.71 0.9 14.45 15493 153.42 0.1 13.57 
L6 3592 153.45 6.5 19.77 5439 717 1.6 54 13196 56.16 0.5 18.23 15439 171.29 0.2 52.76 

                 
(b) no. of trucks = 20, average number of  destinations per inbound truck = 6         

L4 3758 51.53 0.4 2.48 6718 117 0.2 8.62 14158 13.97 0.0 1.39 17118 43.78 0.0 2.4 
L5 3625 184.84 0.0 29.18 6465 1045 0.1 70.19 13625 137.72 0.1 28.7 16465 114.74 0.0 33.01 
L6 3625 358.68 0.0 60.93 6465 1428 0.0 61.19 13625 379 0.0 16.56 16465 133.98 0.1 33.82 

  
 
               

t.w. 𝑑_𝑖 − 𝑟_𝑖 = 3	 𝑑_𝑖 − 𝑟_𝑖 = 3	 𝑑_𝑖 − 𝑟_𝑖 = 3	 𝑑_𝑖 − 𝑟_𝑖 = 3	
 Integrated Sequential Integrated Sequential Integrated Sequential Integrated Sequential 

layout obj. time ∆(%) time obj. time ∆(%) time obj. time ∆(%) time obj. time ∆(%) time 
(a) no. of trucks = 20, average number of  destinations per inbound truck = 4         

L4 4332 308.86 1.8 7.78 6732 288 1.1 2.91 16332 87.28 0.5 2.99 18732 169.68 0.4 2.4 
L5 4045 >1800 0.6 982.18 6824 >1800 -8.2 >1800 14439 459.02 0.2 219.7 17837 >1800 0.3 594.16 
L6 3905 >1800 2.0 1071.56 7067 >1800 -10.6 1287 14305 792.34 0.3 135.62 17346 1660.26 0.7 543.97 

                 
(b) no. of trucks = 20, average number of  destinations per inbound truck  = 6         

L4 3600 416.08 0.0 9.99 6000 835.8 0.0 9.23 13600 4.02 0.0 4.02 16000 1173.19 0.0 9.38 
L5 3088 >1800 1.0 1541.19 6721 >1800 -11.6 >1800 11088 171.99 0.1 171.99 13728 >1800 0.29 602.04 
L6 3055 >1800 0.2 1800.49 5932 >1800 -6.0 >1800 11046 451.37 0.3 451.37 13486 >1800 -0.2 >1800 

 
t.w.  indicates the length of the time windows 
obj. indicates the value of the objective 
>1800 indicates that the solver has terminated because of the time limit 
∆(%) indicates the relative difference between the integrated and sequential solutions 
 
 

 
Table 4 Experiment results with 15 dock-doors. 

  𝛽 = 1, 𝜂 = 10, 𝛾 = 100	 𝛽 = 1, 𝜂 = 50, 𝛾 = 100	 𝛽 = 1, 𝜂 = 10, 𝛾 = 500	 𝛽 = 1, 𝜂 = 50, 𝛾 = 500	
t.w. 𝑑_𝑖 − 𝑟_𝑖 = 2	 𝑑_𝑖 − 𝑟_𝑖 = 2	 𝑑_𝑖 − 𝑟_𝑖 = 2	 𝑑_𝑖 − 𝑟_𝑖 = 2	

 Integrated Sequential Integrated Sequential Integrated Sequential Integrated Sequential 
layout obj. time ∆(%) time obj. time ∆(%) time obj. time ∆(%) time obj. time ∆(%) time 
(a) no. of trucks = 20, average number of  destinations per inbound truck  = 4         

L1 3383 >1800 4.3 4.34 4877 246 2.7 2.80 12583 675.8 1.2 2.69 14077 133 1.0 2.70 
L2 3333 >1800 2.4 17.89 4820 302 1.5 16.90 12533 375.94 0.6 16.79 14020 611 0.5 21.74 
L3 3320 >1800 1.1 19.03 4807 376 0.6 17.97 12520 551.23 0.3 17.90 14007 719 0.2 39.74 

                 
(b) no. of trucks = 20, average number of  destinations per inbound truck = 6         

L1 3296 >1800 2.5 8.02 5229 424 1.4 424.04 12484 >1800 0.8 3.13 14429 427 0.5 5.05 
L2 3273 >1800 2.4 11.51 5193 1211 1.5 1210.61 12466 >1800 0.7 9.07 14393 1105 0.5 11.73 
L3 3282 >1800 1.8 255.96 5192 1800 1.3 >1800 12473 >1800 0.5 189.41 14392 1513 0.4 184.98 
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t.w. 𝑑_𝑖 − 𝑟_𝑖 = 3	 𝑑_𝑖 − 𝑟_𝑖 = 3	 𝑑_𝑖 − 𝑟_𝑖 = 3	 𝑑_𝑖 − 𝑟_𝑖 = 3	
 Integrated Sequential Integrated Sequential Integrated Sequential Integrated Sequential 

layout obj. time ∆(%) time obj. time ∆(%) time obj. time ∆(%) time obj. time ∆(%) time 
(a) no. of trucks = 20, average number of  destinations per inbound truck = 4         

L1 3649 >1800 2.2 8.02 3863 1479 2.8 5.63 13721 >1800 0.7 4.28 14263 705 0.6 2.91 
L2 3567 >1800 2.8 8.81 3860 >1800 0.4 17.99 13189 >1800 0.7 8.81 14267 >1800 0.1 9.45 
L3 3435 >1800 3.3 32.26 3678 >1800 1.8 62.26 13081 >1800 0.3 19.30 13660 >1800 0.8 15.90 

                 
(b) no. of trucks = 20, average number of  destinations per inbound truck = 6         

L1 2674 >1800 2.2 9.52 3123 >1800 -0.2 5.68 9895 >1800 0.4 7.31 10667 >1800 0.5 5.86 
L2 2658 >1800 0.9 72.04 3080 >1800 0.6 35.17 9847 >1800 0.3 110.87 10362 >1800 -0.01 111.67 
L3 2633 >1800 2.1 71.56 2917 >1800 0.4 33.90 9842 >1800 0.5 49.18 10119 >1800 0.5 37.95 

 
t.w.  indicates the length of the time windows 
obj. indicates the objective 
>1800 indicates that the solver has terminated because of the time limit 
∆(%) indicates the relative difference between the integrated and sequential solutions 
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