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Abstract 

 Methods for designing a facility layout typically assume that the aisles 

for interdepartmental travel will be parallel to the exterior walls of the 

facility. However, by putting aisles at an angle to the exterior walls, more 

direct routes between departments can be created, reducing travel distance. 

This paper describes a method to create a facility layout that does not have 

orthogonal aisles and testing of the resulting layouts shows that travel 

distance is reduced. 

 

1 Introduction 

There has been much research done to develop methods for determining the layout of a 

facility. Typically, the objective of the Facility Layout Problem (FLP) is to position the 

departments to minimize the total travel distance between departments, so that departments 

with the highest rate of interdepartmental travel are located closest to each other in the 

facility. 

 A variety of methods have been developed for solving the FLP. Drira, et al. [1] 

reviewed different many approaches. Davoudpour, et al. [2] also reviewed approaches to 

the FLP, considering specifically layouts utilizing a bay structure, in which the departments 

are organized into lateral bays that run the width of the facility. 

 Across all formulations of the FLP that have been used in previous research, one 

common assumption is that boundaries of the departments are parallel to the exterior walls 

of the facility. Travel between departments is typically constrained to departmental 

boundaries (rather than passing through departments), so as a consequence of the 

boundaries being parallel to the facility walls, travel occurs along a rectilinear path rather 

than a more direct Euclidean path. 

 However, there are no physical reasons that this assumption is necessary. In general, as 

long as a travel path doesn’t pass through one of the support columns in a facility, it is a 

feasible path. The reason that this assumption is typically made is that it makes solving the 

FLP more manageable. 

 One common approach to the solving the FLP is to represent the facility as a grid, 

assigning each department to the appropriate number of squares in the grid. This allows 
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non-rectangular departments (e.g., L-shaped) to be formed, but the department boundaries 

follow the gridlines, which are parallel to the walls of the facility. 

 Another approach to the FLP is to define the location of each department based on the 

location of one corner of the department (e.g., lower left) and its length (or height); by 

knowing the area of the department, the height (or length), and therefore the opposite corner 

of the department (e.g., upper right) can be calculated. This frees the boundaries from 

needing to align exactly with the gridlines, but it results in rectangular departments that are 

parallel to facility walls. 

 Looking beyond manufacturing facilities, Gue and Meller [3] demonstrated that using 

non-rectilinear aisles in a warehouse could reduce travel distances, since workers can use 

a path between the origin and destination of their travel that is closer to being a straight 

line. Non-rectilinear aisles can also provide benefits to a manufacturing facility, but 

integrating them into the layout is more difficult than applying them in a warehouse for 

two reasons. 

 First, a warehouse layout consists mainly of racks and a manufacturing layout consists 

of departments. The racks can essentially be represented by lines and the departments are 

represented by areas. As lines, the position of the racks can be manipulated more easily, to 

adapt to the location of the angled aisles. Department shapes cannot be adjusted as easily, 

since they must fit into the space left between aisles and cannot be divided by an aisle. In 

most FLP methods, the areas are placed first and the aisles are assumed to run along the 

department boundaries. This approach is difficult when department boundaries are not 

parallel to the facility walls, since allowing boundaries to be at any angle increases the 

complexity of the problem. 

 Second, most trips in a warehouse start and/or end from a small number of locations, 

typically receiving and shipping docks. This means that aisles can be set with one endpoint 

at or near these locations. For a manufacturing facility, trips can begin and end in any 

department, so the design of aisles should take into account the relative frequency of trips 

between all possible origins and destinations. 

 The methodology described in this paper provides a method to create a layout that does 

not require all aisles be rectilinear. The method avoids the complications described above 

by separating the process of determining the layout and the process of determining the 

aisles. Once the layout and travel paths have been defined, the aisles can be rotated from a 

rectilinear position to determine the angle for each aisle that minimizes overall travel 

distance. Aisles that are not rectilinear are referred to as angled or rotated aisles. 

 

2 Methodology 

As described in the previous section, most approaches to solving the FLP deal with the 

complexity of the problem by limiting the departmental boundaries to be parallel to the 

exterior walls of the facility. If a department’s location, wall length, and corner angles were 

all allowed to be manipulated, the complexity of the problem would become even more 

difficult to solve. 
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To facilitate the development of a layout with angled aisles, the process of arranging 

the departments is separated from the process of rotating the aisles. In the Creation Phase 

of the methodology, the layout is generated. Then in the Improvement Phase, the aisles are 

rotated to determine the angle for each aisle to minimize the overall travel distance. 

In addition, the methodology assumes that the layout developed in the Creation Phase 

utilizes a flexible bay approach. In a flexible bay layout, the bays run the entire width of 

the facility and the length of each bay is adjusted to provide the area needed for the 

departments located in that bay. An example is shown in Figure 1. 
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Figure 1: Example of a Flexible Bay Layout 

 

Flexible bays have been used by many previous researchers, including Tate and Smith 

[4], Konak, et al. [5], and Kulturel-Konak and Konak [6]. All of these researchers 

demonstrated methods for generating a layout that utilized the flexible bay structure and 

their results have been used to evaluate the performance of a layout with angled aisles. 

The flexible bay layout is well-suited to allowing angled aisles because it has a limited 

number of aisles. In the Improvement Phase, only vertical aisles (i.e., the bay boundaries) 

or horizontal aisles (i.e., boundaries between departments in a bay) are rotated, which limits 

the complexity of finding the optimal angle for each aisle. 

Masel and Hedges [7] demonstrated the potential for reducing travel distance by 

rotating the boundaries of the bay. This paper formalizes the procedure for determining the 

angle of the aisles and also explores the potential for benefits if the horizontal aisles are 

rotated instead of the vertical aisles. 

 

2.1 Overview of Situation 

The primary assumption made in this methodology is that the facility utilizes a flexible bay 

structure, with bays running the width of the facility (top to bottom in Figure 1) and the 

length of each department in a given bay is the entire length of the bay. The “flexible” part 

of the layout structure refers to the fact that the length of a bay can be adjusted; depending 

on what departments are assigned to a bay, its length is set to provide sufficient area for all 
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of the assigned departments. As shown in Figure 1, this results in each bay being a different 

length. 

 It is assumed that all interdepartmental travel will take place in aisles that are concurrent 

with the borders of the departments in the facility. For calculating travel distance between 

a pair of departments, it is assumed that the contour distance metric will be used to calculate 

the length of the route between the input/output (I/O) stations of the two departments. 

 The contour metric is used in order to reflect the location of the department boundaries 

that will be used for interdepartmental travel. The contour metric measures the length of 

each segment of the departmental borders that are used for a trip. In contrast, both the 

rectilinear and Euclidean metrics ignore departmental boundaries when calculating the 

distance between two points. When measuring with the contour metric, the length of the 

path between two departments will change as the shapes of the departments change, but 

the rectilinear and Euclidean paths would not change in a way that reflects the new aisles. 

 Using I/O stations as the endpoints of the travel paths is also necessary to reflect the 

impact of changes in departmental shapes. Because the contour metric measures distance 

by following departmental boundaries, the endpoint representing a department should fall 

on the boundary of that department. Additionally, although the location of the centroid for 

a department will change as the shape of the department changes, the magnitude of the 

change in location doesn’t necessary reflect the impact of the effect on travel, since 

interdepartmental travel doesn’t go from or to the centroid. 

 In defining the I/O stations, it will be assumed that there is a single point in each 

department from which all outgoing trips depart and to which all incoming trips arrive. 

This is for simplification in the travel calculations, but if there were multiple points for a 

given department (e.g., separate locations for input and output) the methodology could be 

adapted to accommodate this. 

 Within a given department, it is assumed that there is a limited effect on operations as 

the department’s shape changes so that the location of equipment in a department can be 

shifted to reflect the new boundaries without affecting the flow between machines, as 

shown in Figure 2. 

 

 
 

(a) (b) 

Figure 2: Example of Departmental Layouts (a) Before Changing Aisles; (b) After 

Changing Aisles 
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 There may be a small amount of unusable space at the corners that have acute angles, 

but the extent to which a department can be deformed will be limited by using a minimum 

side length or a minimum aspect ratio (i.e., ratio of the shorter side to the longer side). 

Note that both departments in Figure 2 have the same area, so the machines in the 

department are shifted to adapt the layout to the new shape. 

 

2.2 Creation Phase 

The first phase of the procedure involves creating the layout that will be modified in the 

next phase. There are three main aspects of the layout that must be defined in this phase: 

1. Location of departments 

2. Location of I/O stations 

3. Travel paths between I/O stations 

 

 For the first step, there are many approaches in the literature that have been developed 

to determine the layout of the departments in a facility, as noted in Section 1. When creating 

the layout, the only restriction for the remainder of the methodology is that the layout 

follow the flexible bay structure.  

 After the layout has been created, the location of the I/O station for each department 

must be determined. As with the layout, there are alternate approaches for positioning the 

I/O stations. If the equipment for each department is known, the layout within each 

department can be defined and the I/O station can be placed appropriately for the flow 

between machines. 

 If the layout within departments cannot be determined, the I/O stations can be placed 

based on the interdepartmental flows. Kim and Kim [8] proved that to minimize the travel 

distance, the I/O stations should be located at intersections of departmental boundaries. For 

a given department, this includes corners where the department’s own walls meet and 

intersections where another department’s boundary connects. Figure 3 shows the candidate 

locations for I/O stations for Department A. There are four candidates at corners (#1, 2, 5, 

and 6) and three candidates from horizontal boundaries in adjacent bays (#3, 4, and 7). 
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Figure 3: Examples of Options for Placing I/O Stations 
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 Once locations of all I/O station candidates have been identified, the shortest path 

between all pairs of points can be determined. Using these distances, the combination of 

locations that minimizes the total travel distance can be determined, selecting exactly one 

I/O station per department. The calculation of total travel distance, D, is shown in Equation 

(1): 

𝐷 =∑∑𝑓𝑖𝑗 ∙ 𝑑𝑖𝑗

𝑛

𝑗=𝑖

𝑛

𝑖=1

 (1) 

 

where fij is total flow (i.e., number of trips) between departments i and j and dij is the travel 

distance between departments i and j.  

 Finally, the path between each department must be defined. The path between 

departments i and j corresponds to the aisle segments that are traveled to obtain the shortest 

distance between the I/O stations of i and j. 

 

2.3 Improvement Phase 

Once the location of the departments and I/O stations has been defined, the layout can be 

improved by rotating the aisles. In doing the rotation, it is important to note what does not 

change as the aisles are rotated: 

 Area of a department 

 Area of a bay 

 Aisle intersection a department’s I/O station is located at 

 Path traveled between a given pair of departments 

 

 The area of the departments and the bays should remain constant as the aisles are 

rotated. This allows the coordinates of the corners of each department to be recalculated 

after the aisles are rotated. The corners must be defined to determine the length of each 

segment of the travel paths. 

 In the flexible bay layout, the shapes of the departments change from rectangular to 

trapezoidal as the aisles rotate, but the width of the bay remains constant, allowing the 

dimensions to be easily calculated. One restriction on rotation is that either horizontal or 

vertical boundaries can be rotated, but not both. Figure 4a shows a layout of a single bay 

before rotation, and Figures 4b and 4c show examples of horizontal and vertical rotation, 

respectively. 

 When rotating aisles, it is important to note that departmental boundaries that are 

created by the exterior walls of the facility are never rotated so that the shape of the facility 

is not affected. Also, each horizontal aisle is rotated independently, since there typically 

isn’t a connection between the horizontal boundaries. However, when vertical aisles are 

rotated, it is the bay boundaries that are rotated, so all departments in that bay have the 

same angle. The reason for this is that each vertical aisle is a boundary for two bays and 

the horizontal aisles in each of the two bays aren’t aligned. Allowing each segment of a 

vertical aisle to rotate independently would produce departments with non-trapezoidal 
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shapes, which would make calculation of areas much more difficult and could also provide 

unusable department geometries. 

 

   
(a) (b) (c) 

Figure 4: Layout of a Single Bay (a) Before Aisles are Rotated; (b) With Horizontal 

Aisles Rotated; (c) With a Vertical Aisle Rotated. 

 

 For determining the optimal angle for each horizontal (or vertical) aisle, equation 1 

provides the objective function. As noted in section 2.2, dij can be calculated by summing 

the length of each segment along the travel path from i to j. The path (in terms of which 

segments are traveled between i and j) will not be altered from what was determined in the 

construction phase. The length of each segment will be recalculated as aisles are rotated, 

so that the travel distance from i to j can still be calculated as the sum of the assigned 

segments. 

 Because the endpoints of each segment of the travel path are located at the corner of 

one or more departments, knowing the dimensions of each department provides 

information on the coordinates of the endpoints. All segments of the travel path are straight 

lines, even as the aisles rotate, so the distance of a segment can be calculated as the 

Euclidean distance between its endpoints. 

 Once the optimal angle has been determined for each aisle, the paths should be 

rechecked. The rotated aisles may provide the opportunity for a shorter path (i.e., changing 

some of the segments that are traveled), which could further reduce the travel distance. 

 

3 Testing and Results 

Testing of the methodology was performed on three layout problems from the literature. 

The problems were chosen because the flexible bay structure had been used to determine 

a layout for each problem, though the best flexible bay layout was determined by later 

authors. The layouts are shown in Figure 5. 

 For all of the layouts from the literature that are shown in Figure 5, the authors used 

centroid-to-centroid distances in determining the layouts. Therefore, the location of I/O 

stations needed to be determined for each layout. This was done by considering the shortest 

path from each candidate location for each department to every candidate in every other 

department, then determining which location in each department minimized the total travel 

distance. 
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 In Figure 5, the location chosen for the I/O station in each department is shown as a 

dot. The dark lines indicate the travel paths that are used in moving between those stations.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 5: Original Layouts Used to Test the Methodology (a) van Camp 10-

Department Problem [9] (Layout Shown from [4]); (b) Bazaraa 14-Department 

Problem [10] (Layout Shown from [5]; (c) Armour and Buffa 20-Department 

Problem [11] (Layout Shown from [6])  
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Note that Department 14 in Figure 5b does not have an I/O station defined because it is a 

dummy department (included to represent space in the facility that is not needed for any 

department) and therefore there are no flows to or from this department.  

 Once the I/O stations and travel paths were determined, the optimal angle was 

determined for each horizontal or vertical aisle. For reference, examples of aisle 

measurements are shown in Figure 6. 

 

  
(a) (b) 

Figure 6: Examples of Aisle Measurements for (a) Horizontal Aisles; (b) Vertical 

Aisles 

 

Table 1 shows the results of the testing when rotating horizontal aisles and Table 2 shows 

the results of rotating vertical aisles. In Table 1, when there are multiple angles listed for a 

bay, they are for the aisles going from top to bottom in the bay. 

 

Table 1: Optimal Angles for Horizontal Aisles 

 Bay 1 Bay 2 Bay 3 Bay 4 Bay 5 Bay 6 Bay 7 

VC10 
No 

Aisles 
108.1° 

No 

Aisles 
58.1° 65.4° 83.6° N/A 

B14 
70.9° 

40.8° 

No 

Aisles 

No 

Aisles 

153.4° 

90.0° 

90.0° 

No 

Aisles 

No 

Aisles 

154.3° 

90.0° 

AB20 83.0° 

110.7° 

109.6° 

108.2° 

92.4° 

57.5° 

99.8° 

113.0° 

77.2° 

80.0° 

120.3° 

94.1° 

67.3° 
76.2° N/A 

 

Table 2: Optimal Angles for Vertical Aisles 

 Aisle 1 Aisle 2 Aisle 3 Aisle 4 Aisle 5 Aisle 6 

VC10 81.1° 65.4° 82.5° 103.5° 105.0° N/A 

B14 98.1° 93.5° 90.0° 90.0° 87.6° 85.3° 

AB20 91.7° 88.4° 92.7° 87.6° 90.9° N/A 
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 The cost of each layout is given in Table 3. The values are based on the flows provided 

in the original problem. However, because previous testing on these problems used a 

centroid-to-centroid distance, the values in the table for Original Cost were calculated 

assuming the locations for the I/O stations shown in Figure 5. For each of the new designs, 

Table 3 also provides the percent decrease in cost from the original layout. 

  

Table 3: Layout Costs 

 

Original 

Cost 

Horizontal 

Rotation 

Percent 

Decrease 

Vertical 

Rotation 

Percent 

Decrease 

VC10 $7,166 $5,992 16.4% $5,672 20.9% 

B14 $4,718 $4,262 9.7% $4,256 9.8% 

AB20 $3,484 $3,286 5.7% $3,289 5.6% 

 

 Each layout shows a reduction in travel distance as either horizontal and vertical aisles 

are rotated. The percent reduction decreases when there are more departments, but it is 

unclear if this is due to generally having more complex interdepartmental flows in the 

larger problems, or if it is due to the specific flows in these problems. To evaluate the 

relationship between the number of departments and percent improvement, multiple 

problems with the same number of departments would be needed. 

 

4 Conclusions 

Rotating the aisles in a flexible bay layout provides opportunities for reducing the travel 

distance in a facility. The two-phase process of creation and then improvement provides a 

feasible model for optimization because in the improvement phase, the only decision 

variables are the aisle angles. 

 There are opportunities for further improvement in travel distance by creating 

departmental shapes that are more complex than trapezoids by allowing all four walls of a 

department to not be parallel to the facility walls. Further improvement may also be 

possible if the locations of departments and/or I/O stations were re-evaluated after the aisle 

angles are set. 
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