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Abstract 

The Robotic Mobile Fulfillment System is a newly developed 
automated, parts-to-picker material handling system. Storage shelves, also 
known as inventory pods, are moved by robots between the storage area 
and the workstations, which means that they can be continually 
repositioned during operations. This paper develops a queueing model for 
optimizing three key decision variables: (1) the number of pods per 
product (2) the ratio of the number of pick to the number of replenishment 
stations, and (3) the replenishment level per pod. We show that too few or 
too many pods per product leads to unnecessarily long order throughput 
times, that the ratio of the number of pick to the number of replenishment 
stations can be optimized for order throughput time, and that waiting to 
replenish until a pod is completely empty can severely decrease 
throughput performance. 

1. Introduction 
E-commerce order fulfillment can be quite challenging for warehouses. Assortments tend 
to be large, orders are typically single-line orders and the order frequency of products can 
fluctuate strongly. Robotic Mobile Fulfillment Systems (RMFS) are a new category of 
automated storage and part-to-picker order picking systems developed specifically to 
fulfill e-commerce orders. These have been brought to the market by companies such as 
Amazon Robotics (previously known as Kiva Systems, see [3]), Swisslog, Interlink, 
GreyOrange, Scallog, and Mobile Industrial Robots. Implementations so far suggest that 
picking rates may double compared to traditional picker-to-parts systems (Wulfraat [17]). 

The core innovation of an RMFS are robots that transport the pods, i.e. shelves 
containing products, to workstations. At a workstation, the pods queue while a worker 
either picks items from, or replenishes items on, the pod directly in front of him, see 
Figure 1. 
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Robot carrying a pod, [19]     Top view of a workstation 
 Figure 1: Illustration of an inventory pod and close-up of a workstation 
 

An RMFS is flexible in operations, because pods do not need to have a fixed position 
in the storage area but can instead be repositioned continually throughout the day, see 
also Wurman and Enright [19]. Inventory can thus be positioned close to the workstations 
as needed.  

In addition, replenishment of a product can happen across multiple pods that can be 
positioned independently from each other. However, across how many pods should a 
given amount of a product's inventory be spread? In an e-commerce warehouse, one of 
the main performance metrics is the order throughput time. If all inventory is allocated to 
one pod, then there is the risk of temporary unavailability of that product when the pod 
needs to go for replenishment. If inventory is allocated to multiple pods, however, 
replenishment happens more frequently and it also becomes less likely that a large order 
can be fulfilled with inventory from a single pod. In both cases, orders for that product 
will be delayed and order throughput time increases.  

The extent to which this would happen also depends on the replenishment level. A 
higher replenishment level means that replenishment happens more frequently and may 
therefore cause additional robot travel time and additional queueing at the workstations. 
However, it also means that the average inventory on a pod is higher and hence means 
that orders which require many units have to wait less.  

The queueing at the workstations is also influenced by the ratio of the number of pick 
stations to replenishment stations. A higher replenishment level does not necessary lead 
to more queueing if the number of replenishment stations is also higher. If the number of 
pods per SKU and the replenishment level are not optimized, long and unnecessary 
delays may occur that can have a large impact on the order throughput time. If the ratio of 
the number of pick to the number of replenishment stations is not optimized, pick stations 
may have unacceptably low utilization while too much queueing occurs at the 
replenishment stations, or vice versa.  

This paper studies how to minimize the order throughput time by optimizing three 
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decision variables: (1) the number of pods per product, (2) the ratio of the number of pick 
to the number of replenishment stations, and (3) the replenishment level per pod. 

Section 2 discusses the literature and motivates why a queueing model is suitable for 
analyzing these decision variables. Section 3 details how the queueing network is 
constructed, Section 4 provides the results and Section 5 the conclusions and future 
outlook. 

2. Literature 
Queueing networks have been used extensively for analyzing the performance of 
autonomous vehicle storage and retrieval systems (AVS/RS) and automated storage and 
retrieval systems (AS/RS). These networks can optimize key decision variables, because 
the low computation time allows evaluation of a large set of parameters. For example, 
Kuo et al. [7] use queueing models to predict the vehicle utilization and the service, 
waiting and cycle times while varying five key design variables, namely the number of 
aisles, the number of storage columns per aisle, the number of storage tiers in the system, 
the number of vehicles in the system, and the number of lifts in AVS/RS. As another 
example, Fukunari and Malmborg [5] estimate the expected utilization of resources in an 
AVS/RS machine using a queueing model that incorporates both single and dual 
command cycles.   

In addition, queueing networks can incorporate the stochasticity of vehicle traveling 
and the worker speed and can capture the resulting congestion effects, see Tappia et al. 
[16], Marchet et al. [9], Roy et al. [12], Roy et al. [13], Roy et al. [14] and Roy et al. [11].  

Networks where orders arrive and depart from the system can be divided into two 
broad categories:  Open Queueing Networks (OQN) (Heragu et al., [6]) and Semi-Open 
Queueing Networks (SOQN). SOQNs can capture the matching of different kinds of 
resources and can therefore include the time an order has to wait before being matched 
with a vehicle. For example, Roy et al. [10] use a multi-class semi-open queueing 
network to analyze the performance impact of system parameters such as the number of 
vehicles and lifts, the depth-to-width ratio and the number of zones. They also study the 
impact of operational decisions such as vehicle assignment rules on vehicle utilization 
and order cycle time.  

A disadvantage of SOQNs is that they do not have product form solutions and 
therefore only approximations rather than exact solutions exist. Ekren et al. [4] apply the 
matrix-geometric method to analyze a SOQN for an AVS/RS and obtain quite accurate 
performance measures. Roy et al. [10] develop a decomposition approach to evaluate 
system performance. 

Lamballais et al. [8] and Roy et al. [15] develop SOQN for estimating the 
performance of picking operations in an RMFS. Lamballais et al. [8] optimize the layout 
of an RMFS warehouse by estimating the expected order cycle time, workstation 
utilization and robot utilization for a given layout and determining the optimal 
dimensioning of the storage area, the optimal placement of the workstations. This paper 
extends the work by Lamballais et al. [8] by considering both pick and replenishment 
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operations and analyzing inventory allocation decisions. 

3. Model 
From the perspective of the robot, three movements happen: (a) moving empty or idle to 
a storage location, then (b) lifting the pod and bringing it to a workstation, and finally (c) 
moving the pod to another storage location and storing it, after which this cycle repeats 
Lamballais et al. [8]. Since the workstations can be either pick or replenishment stations 
and pods may need to wait for an order to arrive, the complete picture from the pod's 
perspective is more complicated with 8 processes rather than 3 moves. 

The pod (1) waits to be matched with an order, (2) waits for a robot to come to its 
storage location, (3) moves to the pick station, (4) queues for its turn and then has items 
picked from it, (5) returns to the storage area if its inventory is not below the inventory 
level, (6) otherwise is brought to a replenishment station, (7) queues for its turn and then 
is replenished at the replenishment station, and (8) returns to the storage area, see also 
Figure 2.  

Figure 2: Illustration of pod movement 
 
Each of these processes can be modeled as a queue, where the distribution of the travel 
times in a situation becomes the distribution of the service time of the corresponding 
queue. The queueing network is shown in Figure 3. It is a Semi-Open Queueing Network 
to capture the matching of an order to a pod. The numbers in Figure 2 and Figure 3 show 
which situation corresponds with which queue.  

Since RMFSs were designed specifically for e-commerce situations, all orders are 
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assumed to be single-line orders. If every line requires only one unit of a product, then 
the queueing model can be solved using the methods in Buitenhek et al. [2] and Bolch et 
al. [1]. If a line requires more than one unit, then the behavior of the queueing network 
becomes more complicated, because a pod with only one remaining unit cannot fulfill an 
order line that needs multiple units. In that case, the queueing network can be analyzed 
using the corresponding Markov Chain.  

 

Figure 3: Queueing model of pod movements in the RMFS 
 
Calculating the probabilities of all the states in the Markov Chain will allow the 

derivation of the performance metrics. Let 𝑀^𝑠 be the number of pods for an SKU 𝑠, so 
that the total number of pods equals 𝑁 = ∑_𝑠 𝑀^𝑠, let 𝜋_𝜙 be the stationary probability 
for the state 𝜙, let 𝑛^𝜙 be the number of pods in use in state 𝜙, let 𝑜^𝜙 be the number of 
orders in the system in state 𝜙 and let 𝜆 be the order arrival rate. Then the order 
throughput time, 𝑡_𝑜𝑡, measured in seconds, and the pod utilization, 𝜌_𝑝𝑜𝑑, can be 
calculated as: 

 
𝑡_𝑜𝑡 = ∑_𝜙 𝜋_𝜙  𝑜^𝜙/𝜆  	
𝜌_𝑝𝑜𝑑 = ∑_𝜙 𝜋_𝜙  𝑛^𝜙/𝑁	

 
Here the formula for 𝑡_𝑜𝑡 is simply Little's Law, weighted by the state probabilities. 
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Pod utilization measures the percentage of pods being transported to and from 
workstations and being handled by workers. In other words, pod utilization measures the 
percentage of pods carried by robots. 

4. Results 
Tables 1 shows the results from the experiments. Let 𝑈 be the number of units on a pod 
directly after replenishment, let 𝑟 be the ratio of the number of pick stations to the 
number of replenishment stations, and let 𝜉 be the replenishment level. 
 

Table 1: Results experiment, 𝑡_𝑜𝑡 in seconds and 𝜌_𝑝𝑜𝑑  in percentages 
   𝜉 = 0%	 𝜉 = 50%	 𝜉 = 100%	
𝑀^𝑠	 𝑈	 𝑟	 𝑡_𝑜𝑡	 𝜌_𝑝𝑜𝑑	 𝑡_𝑜𝑡	 𝜌_𝑝𝑜𝑑	 𝑡_𝑜𝑡	 𝜌_𝑝𝑜𝑑	

1	 36	 (1,	5)	 414.4	 11.1	 168.3	 11.2	 171.0	 13.2	
1	 36	 (2,	4)	 330.2	 7.4	 92.7	 7.5	 97.2	 9.7	
1	 36	 (3,	3)	 332.7	 7.2	 89.3	 7.3	 93.8	 9.6	
1	 36	 (4,	2)	 328.5	 7.1	 88.6	 7.3	 93.2	 9.7	
1	 36	 (5,	1)	 323.7	 7.1	 88.9	 7.3	 103.9	 13.1	
2	 18	 (1,	5)	 172.0	 5.7	 148.3	 5.6	 146.3	 6.5	
2	 18	 (2,	4)	 89.7	 3.5	 77.0	 3.6	 77.2	 4.6	
2	 18	 (3,	3)	 85.6	 3.4	 73.7	 3.5	 74.0	 4.5	
2	 18	 (4,	2)	 85.4	 3.4	 73.0	 3.5	 73.3	 4.6	
2	 18	 (5,	1)	 86.3	 3.4	 73.3	 3.5	 74.0	 6.5	
3	 12	 (1,	5)	 147.3	 3.6	 141.4	 3.7	 147.2	 4.4	
3	 12	 (2,	4)	 74.5	 2.3	 72.2	 2.4	 72.2	 3.0	
3	 12	 (3,	3)	 72.2	 2.2	 69.1	 2.3	 69.2	 3.0	
3	 12	 (4,	2)	 71.5	 2.2	 68.6	 2.3	 68.6	 3.0	
3	 12	 (5,	1)	 70.7	 2.2	 68.7	 2.4	 68.8	 4.4	
4	 9	 (1,	5)	 158.2	 2.8	 140.0	 2.8	 140.3	 3.2	
4	 9	 (2,	4)	 87.5	 1.7	 69.5	 1.8	 69.3	 2.2	
4	 9	 (3,	3)	 81.1	 1.7	 66.4	 1.7	 66.3	 2.2	
4	 9	 (4,	2)	 83.4	 1.7	 65.7	 1.7	 65.7	 2.2	
4	 9	 (5,	1)	 84.8	 1.7	 66.0	 1.8	 65.9	 3.2	
6	 6	 (1,	5)	 139.9	 1.8	 137.0	 1.9	 144.5	 2.2	
6	 6	 (2,	4)	 66.0	 1.2	 65.9	 1.2	 65.9	 1.4	
6	 6	 (3,	3)	 63.3	 1.1	 63.1	 1.2	 62.9	 1.4	
6	 6	 (4,	2)	 62.6	 1.1	 62.4	 1.2	 62.5	 1.4	
6	 6	 (5,	1)	 63.1	 1.1	 62.6	 1.2	 62.6	 2.1	

 
The number of pods is the same for all SKUs, and varies from 𝑀^𝑠 = 1 to 𝑀^𝑠 = 6 

in the experiments. The maximum possible inventory in the system per SKU is kept 
constant at 36 and therefore 𝑈 varies so that 𝑀^𝑠 𝑈 = 36 everywhere. The total number 
of workstations is 6 and 𝑟_𝑛 = (𝑖, 𝑗) indicates that 𝑖 pick stations and 𝑗 replenishment 
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stations were present. The total number of SKUs is 100 and per hour two orders arrived 
per SKU, so 𝜆 = 200. 

Table 1 shows that allocating all inventory of an SKU on just a single pod leads to 
relatively high order throughput times. Generally speaking, the lowest order throughput 
times seem to be achieved when 𝑀^𝑠 = 6, so in other words when the inventory of an 
SKU is spread across as many pods as possible. Table 1 also shows, especially in the case 
of 𝑀^𝑠 = 1, that 𝜉 = 0% leads to suboptimal results. In other words, waiting to 
replenish a pod until it is empty appears to lead to relatively high order throughput times. 
Replenishing a pod after every pick operation (the case of 𝜉 = 100%), may not be 
efficient, but the order throughput times are not much higher than in the case that 
𝜉 = 50%, i.e. replenishing a pod when it is half full. The pod utilization does seem to be 
affected and is clearly higher for 𝜉 = 100% than for 𝜉 = 50%. In addition, it seems that 
skewing 𝑟 too much in favor of the replenishment stations leads to strong increases in the 
order throughput times. The optimal 𝑟 in terms of lowest order throughput times depends 
on both 𝑀^𝑠 and 𝜉. Similar patterns can be observed for pod utilization, which indicates 
that increased order throughput times are mainly due to longer queueing times at the 
workstations. 

 

5. Conclusions and Future Work 
The results show three main findings. First of all, the number of pods can be optimized, 
and having only a single pod per SKU results in large increases in order throughput time. 
Even if all units of a product fit on one pod, it is beneficial to spread the units across 
multiple pods. A disadvantage of spreading inventory would be that this could results in 
additional work at the replenishment stations.  

Secondly, the optimal ratio of the number of pick to the number of replenishment 
stations depends on both the number of pods per SKU and on the replenishment level. It 
also appears that having just a single pick station strongly increases the order throughput 
times as compared to having more than a single pick station. 

Lastly, the replenishment level itself can also be optimized. It seems that waiting to 
replenish a pod until it is empty severely decreases the performance of the system. 
However, the effect of replenishing a pod after every pick operation does not seem to 
have as strong an effect on the order throughput times as may have been expected. 

This paper focused on several important tactical decisions, but there are many 
promising directions for future research, especially with regard to operational decisions. 
For example, an RMFS is flexible in capacity as robots can be added quickly and 
workstations can be opened and closed as needed. Another interesting feature is the high 
degree to which the system's decisions can be decentralized. Robot movement and 
collision detection was already decentralized in the earliest implementation by Kiva 
Systems, but other elements such as route planning, task scheduling, and resource 
allocation can also be decentralized, see Wurman et al. [18]. 
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