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Abstract 
 

Many exiting slotting methods ignore the picking correlations 
between Stock Keeping Units (SKUs).  In a previous paper, a mix integer 
program model for dynamic slotting to minimize the pick-wave makespan 
among all zones under some load balancing constraints was developed.  
In this paper, we develop an ant colony optimization with slot-exchange 
policy (ACO-SE) based on SKU correlation to assign the correlated SKUs 
to the adjacent slots in the same zone.  The ACO-SE deposits 
pheromones between SKUs, uses local and global pheromone trail updates, 
and controls pheromone accumulation using the Max-Min rule.  The 
main heuristic information is set to the correlation strength and the 
pick-times are introduced as the assisted heuristic information.  A hybrid 
search mechanism was adopted to improve to global search efficiency.  A 
slot exchange policy was proposed to re-slot the correlated SKUs based on 
the picks to ignore the proximity of SKUs and to make the farthest SKU 
for one carton closer to the initial point as far as possible. The promising 
computational results show that the ACO-SE has perfect convergence and 
very good CPU time.  The solution quality of ACO-SE is always better 
than the Cube-per-Order-Index (COI), simulated annealing correlation 
(SA-C) heuristic; it has considerably faster convergence speed than SA-C.  
The result shows that in zone-based wave-picking system with return 
touring policy, the exact proximity of SKUs is not critical and that the 
correlated SKUs can be allocated to any locations along the path from the 
initial point to the other SKU’s location; the correlation strength has no 
obvious impact on the picking efficiency, but and correlation probability 
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has significant impact on the picking efficiency.   
Key Words: Dynamic slotting; SKUs correlation; ACO-SE; Correlation 
strength; Correlation probability; Proximity 

 
1   Introduction 
 
A survey by Frazelle [7] has demonstrated that order picking accounts for over 50% of 
the total operating cost in a typical warehouse.  De Koster et al [3] give a 
comprehensive literature review on this topic.  The warehouse environment on which 
we focus is a zone-based, picking system where cartons travel from zone to zone and 
pickers in each zone pick items into the cartons ([16]). Figure 1 illustrates this system. 
When a carton arrives at a zone, the picker takes a carton from the zone initiation point, 
scans the carton bar code so that the warehouse management system (WMS) can identify 
the SKUs to be picked in that zone and light the corresponding pick-to-light lights in the 
picking area. The picking policy is the Return travel policy – the picker walks down the 
aisle picking the required SKUs, places the carton on the conveyor to be transported to 
the next zone, and then returns to the initiation point and repeats the process for the next 
carton. 

 
Figure 1. Configuration of dynamic pick-wave zone-based warehouse. 

 
One interesting aspect of this system is that the picking area is completely setup for 

and emptied during each pickwave.  That is, the picking area is relatively small and 
different sets of items are picked on different days and, between picking shifts the picking 
area is completely replenished specifically for the subsequent pickwave. The slotting 
problem involves determining an assignment of SKUs to slots in the picking area. Since 
the picking area is completely replenished for each pickwave, the slotting problem must 
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be explicitly solved between each pickwave. As described in Kim and Smith [16], we are 
interested in developing a slotting methodology that minimizes the pickwave makespan 
in this dynamic environment. 

Customer orders are divided into cartons, where each carton typically contains 
multiple SKUs in that order.  Depending on the slotting, cartons may travel to multiple 
zones.  A pickwave consists of the set of cartons comprising the orders for that day 
(referred to as the “carton list”).  The pickwave makespan is the time required to pick all 
cartons in the carton list for the pickwave.  As cartons move through the system, they 
incur the following “costs” (time): 

1. Travel time between zones; 
2. Zone initiation time – the time for the picker to pick up the carton, scan the 

barcode, and wait for the WMS to identify the order and light the picking lights; 
and 

3. Pick time for SKUs – for each SKU, this includes the time for the picker to walk 
from his/her current location to the specified slot and pick the quantity of items 
into the carton. 

As in Kim and Smith [16], we ignore the first component assuming that, with a large 
number of cartons in the system, each zone will have a large queue of cartons waiting 
such that the carton travel time does not substantially contribute to the makespan.  With 
this assumption, we can compute the picking time for each zone (the sums of the 
initiation times and picking times for all cartons that visit that zone) and the makespan 
will be the largest zone picking time.  As such, the slotting problem in which we’re 
interested, involves assigning the SKUs to slots so that the largest zone picking time is 
minimized.   

The premise of our work (as with Kim and Smith [16]) is that we can exploit SKU 
correlations – i.e., cases where multiple SKUs are commonly picked to the same cartons 
by assigning these SKUs to the same zone to minimize the number of zone initiations and 
the walk time associated with picking.  However, where Kim and Smith (2012) assumed 
that SKU adjacency within a zone is important, we generalize this to show that multiple 
slots within the zone are equally good in terms of improving the makespan.  Further, the 
ant colony optimization (ACO) approach performs better than previous approaches in 
both solution quality and solution time/scalability. 

The remainder of the paper is organized as follows: Section 2 briefly discusses the 
related literature and focus on the optimization formulation from Kim and Smith [16]; In 
Section 3, we propose an ACO with a slot exchange policy to solve the dynamic slotting 
problem based on SKU’s correlation; the experimental results are reported in Section 4; 
finally, Section 5, presents conclusions and further research ideas. 

 
2   Background 
 
About the slotting (storage assignment) problem, much research has been done and 
several papers have been written – i.e., see Petersen [22], [23], Heskett [12], [13], 



Harmatuck [10], Malmborg [19], [20] and Hwang et al. [14].  However, much the 
previous research ignores the SKU correlations and focuses on cube-per-order index 
(COI)-based methods.  But in picking systems where multiple items are picked to the 
same carton, there are potential time savings by exploiting the SKU correlations during 
slotting.  

In a static demand system, the incoming and outgoing of SKU flow patterns are 
relatively stationary over the planning horizon.  Frazelle and Sharp [4], [5], developed a 
procedure to assign SKUs to slots based on the correlations among SKUs in this 
environment.  Their research focused on developing a statistical correlation measure to 
use forming clustering of SKUs and the results shown that the SKUs that are likely to 
appear in the same order should be stored in nearby slots.  Malmborg [20] developed the 
slotting with zone constraints and a heuristic procedure for using the COI to generate an 
initial item assignment followed by an improvement step using the Simulated Annealing 
(SA) algorithm.  Zhang and Bo [28] discussed how to find a right place for SKUs firstly 
when we export, import goods or change a site of goods under the practical experiences 
in an automated three-dimensional warehouse.  Xiao and Zheng [27] considered both 
material relevancy and requirement frequency, proposed a Hybrid Genetic Algorithm 
(HGA) to solve the static slotting problem in multi-aisle picking system.  Liu et al. [18] 
and Bie and Li [2] also discussed the slotting problem in the Automatic Storage Retrieval 
System (AS/RS).  Most of existing research studied the storage policy for Automated 
Storage and Retrieval system or picker-to-part system while few considered the 
pick-and-pass system. 

In a dynamic demand system, the patterns of SKUs flow changes dynamically or 
periodically due to the factors such as seasonality, life-cycle or turnover rate, the slotting 
location of SKUs should be adjusted to reflect the changing in time. In the dynamic 
environment, once the order and cartonization information have been given, the number 
of SKUs and correlations between them can be exploited during slotting.  Hackman and 
Platzman [11], Frazelle et al. [6], Van den berg et al. [26], and Bartholdi and Hackman [1] 
studied the fast pick replenishment planning problem from the reserved (Bulk) area.  
The main decisions were to select how much and where of each SKU should be stored in 
the restricted small fast pick area.  In order to exploit the difference between products in 
terms of inventory profiles and usage patterns, Goetschalckx and Ratliff [9] developed a 
shared slotting policy for a unit load warehouse where over time different SKUs are 
stored in the same slot.  Under the less than unit load picking, Landers et al. [17] and 
Sadiq et al. [24] considered a dynamic system where products evolve through a life cycle 
and thus the products mix varies over time, which creates a need to resize SKU slots and 
re-slotting.  They proposed a procedure that included a clustering algorithm to decide 
which SKU should be stored together based on the long-run average correlation. But in 
the dynamic picking system, the information provided by long-run average demands may 
potentially lead to inefficient slotting.  

Literature on specific dynamic slotting is not abundant.  As mentioned previously, 
Kim and Smith [16] proposed an efficient slotting mythology under whole warehouse 
dynamic replenishment system.  Using the correlations between SKUs, they proposed a 



MIP formulation, whose objective is to minimize the pick wave makespan–the maximum 
total completion time among all pickers.  As the problem is NP-hard, they developed a 
correlated slotting improvement heuristic (called SA-C) based on simulated annealing.  
The SA-C can potentially avoid the local optima and the analysis results shown the SA-C 
can achieve promising improvements.  However, for medium and large problems, SA-C 
is computationally expensive since in only considers swaps of size two.  

Further, in the SA-C, correlated SKUs that have strong correlations are assigned to 
adjacent slots.  However, in a zone-based system with the Return travel policy, the 
“proximity” of the SKUs to one another is not really important in reducing pick time.  
Instead, the SKUs just need to be assigned to the same zone and one of the correlated 
SKUs can be allocated to any location along the path from the zone initiation point to the 
other SKU’s location.  So, when considering SKU exchanges, we have many more 
potential slots to consider in order to improve the overall solution. 

 
3  ACO with slot-exchange policy based on SKUs correlations 
 
We use the same mix-integer program formulation proposed by Kim and Smith (2012) to 
improve the picking efficiency in the same picking system and we present an improved 
ant colony optimization (ACO).  The ACO uses the proper ant tour diagram, heuristic 
information, and a hybrid search mechanism to construct the feasible solution that is a 
sequence of SKUs based on their correlations.  Next, we will propose a slots-exchange 
policy that ignores the specific “proximity” of the SKUs in the same zone to improve the 
picking efficiency, and to compare the results with SA-C heuristic from Kim and Smith 
(2012), and to perform some analysis on the impacts of the correlation on the picking 
efficiency. In the next section, an improved ant colony optimization based on SKUs 
correlations will be proposed.  We call this procedure ACO-SE. 

The standard ACO abstracts the problem as a node diagram through which artificial 
ants make tours.  Each completed tour is a feasible solution of the problem and, with the 
feedback of pheromones the solutions will gradually convergence the optimal solution.  
Based on the dynamic slotting problem, we will make some modifications to improve the 
performance of the standard ACO.  The objective of ACO-SE is to find the slotting with 
minimum makespan.  
 
3.1  Construction of diagram and pheromone 
 
As shown in Fig.2, the slotting problem can be represented as a complete linked diagram 
G=(A, L), A is the SKUs set, L is arcs set of two adjacent SKUs.  The procedure of 
assigning SKUs to slots can be seen as the ant moving in the diagram guided by the 
constraints, the pheromone trail and the heuristic information.  A completed tour will 
generate a SKU sequence in which SKUs are assigned to slots, thus the tour represents a 
feasible solution (i.e. the right part of Figure 2) and the makespan of the pick wave can be 
computed for a given number of orders. 



 
Figure 2. Diagram, pheromone and slot assignment 

 
The ants deposit pheromones between two adjacent SKUs.  The pheromone ijτ  

shown in Figure 2, is set based on the proportion that SKU i and j are assigned to the 
adjacent slots in the same zone.  A higher value indicates that there were more previous 
ants assigning SKUs i and j to adjacent slots.  As this value increases so does the 
probability that current and subsequent ants assign the SKUs to adjacent slots and 
increase the pheromone on this route even more. 
  
3.2  Heuristic information 
 
In order to reduce the computational time, we will use some special information based on 
the slotting problem which will help the ants to construct the feasible solution rapidly and 
speed up the solution convergence.  In accordance with the characteristics of the slotting 
problem based on SKUs correlation, we chose the correlation strength as the main 
heuristic information and the picks of SKU as the assisted heuristic information. 

Correlation weight C(i,j) represents the average correlation between SKUs i and j 
(Kim and Smith, 2012).  These weights are used to generate random problem data – the 
greater the C(i,j) is, the stronger the correlation between SKU i and j.  The correlation 
probability Fi is defined as the proportion of correlated SKUs with SKU i to the total 
SKUs.  The greater the Fi is, the more correlated SKUs there are with SKU i.  The 
correlation strength C(i,j) shows that how strong is the correlation between SKU i and j, 
the correlation probability Fi shows that how many SKUs are correlated with SKU i.  
Thus, Fi and C(i,j) decide the correlation among all SKUs in a given pick wave.  The 
correlation strength is decided by K (the total number of SKUs), g (the average line-items 
per carton), J (the total number of cartons) and Fi.  For a set of given orders, Fi can be 
explored by the order information, the smaller the g is, the greater the J and C(i,j) are. 

We define the picks
i

sumP  as the total number of cartons that contain SKU i (i.e., the 

total number of picks of SKU i).  Clearly, the more popular SKUs have larger
i

sumP  and 

should be assigned to the more convenient locations.  In ACO-SE, 
i

sumP  is the assisted 
heuristic information used to develop the solution. 

 
 



3.3  Construction of a feasible solution 
 
In a pick wave, for a given SKUs set { | 1, 2,3......, }i i K= =A  and the correlation 
information exploited based on the carton packing list, we design a procedure for 
constructing a feasible solution which is a SKUs sequence based on an ant tour in the 
diagram G. The procedure is as follows: 
Step (1): Initialize the pheromone 0 , ,ij i j Kτ τ= ∈ , 0τ is the initiation pheromone; let 

zone 1 as the current zone, set the zone index m=1; let slot 1 as the current slot, 
set the slot index n=1;   

Step (2): For the current zone m, ant randomly selects an unassigned SKU form the set 
A as the first SKU of zone m, let the selected SKU as the current SKU , mark 
it as SKU i; set n=n+1;   

Step (3): Using the correlation information, select all unassigned SKUs which are 
correlated with current SKU i to form the candidate set

{ | ( , ) 0, , }j C i j i j= > ∈A0 A ; the remaining unassigned SKUs form the set
{ | ( , ) 0, , }j C i j i j= = ∈A1 A ; 

Step (4):  If ,= ∅ ≠ ∅A0 A1 , which means that there are no correlated unassigned SKUs 
with SKU i, thus select randomly any unassigned SKU j form A1  and assign 
it to the adjacent slot of current SKU, set SKU j as to the current SKU and 
n=n+1; If n=N, the current zone m has no unassigned slots, set m=m+1, go to 
step (2); otherwise go to step (3); 
If ≠ ∅A0 , which means there are one or more correlated unassigned SKUs 
with SKU i, the ant selects SKU j as the next SKU of the sequence based on 
the following hybrid search mechanism which is shown in equation (1): 

1
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                (1) 

In equation (1), r~U(0,1)is a random variable, r1 and r2 are user-defined 
control parameters, 1 20 1r r≤ ≤ ≤ ;α  and β are pheromone factor and heuristic 
information factor respectively; ijτ is the pheromone between SKU i and j; the 
correlation strength is the heuristic information, set ( , )ij C i jη = . 
Set the selected SKU j as the current SKU, set n=n+1; If n=N, it means that 
the current zone m has no unassigned slots, set m=m+1, go to step(2); 
otherwise go to step(3); 
If ,= ∅ =∅A0 A1 , which means that all SKUs have been assigned and the ant 
has completed a tour, a feasible solution is constructed; go to step (5); 



Step (5): The ant has constructed a feasible solution, STOP the tour. The feasible 
solution is a SKUs sequence which consists of all SKUs in a pick wave. The 
sequence means all the SKUs are assigned to slots by some rules. 

During the construction of feasible solution, the ant makes the best use of the 
correlation information to reduce the number of the candidate SKUs; the ant selects the 
next SKU only from the candidate set which has a relatively small number of correlated 
SKUs.  In the TSP, the candidate set is all unvisited cities, so there is a very poor search 
speed when there are a large number of cities.  In the ACO-SE, we introduce the 
correlation information among SKUs to achieve a high search speed by reducing the 
number of the candidate SKUs. 

In order to alleviate the local traps and enhance the search capacity, we need to 
enlarge the search space and make best use of the known information, adjusting the main 
search direction onto the solution space where the optimal solution may be.  Thus, a 
hybrid search mechanism is proposed in equation (1), the ant will execute the Max, 
Probability and Random search policy by the probability of r1, r1- r2 and 1-r2 respectively, 
these improved operations can enlarge the search space and capacity effectively. 

 
3.4  Pheromone update rule  
 
The pheromone local update reflects the reverse feedback, during the construction of 
feasible solution, the ant moves at each step which means that SKU j is assigned to the 
adjacent position of SKU i, the pheromone ijτ  between SKU i and j will be evaporated at 
some rate to reduce the impact on to subsequent ants and enhance the search capacity.  
The local update rule is shown as follows:  

0(1 )ij ijτ ρ τ ρτ= − +                               (2) 

In equation (2), ρ is the evaporate factor, and 0 1ρ≤ ≤ ; 0τ  is the initiation 
pheromone.  

The pheromone global update reflects the positive feedback, which means an extra 
reward to the ant who finds the current best solution to encourage more subsequent ants 
to select the same assignment with higher probability.  Different from the standard ACO, 
the ACO-SE allows only the current global ant to deposit pheromone to alleviate the 
premature and overcome the local-best trap, which means, in each iteration, we uprate the 
pheromone with equation (3) for the current global-best solution. 

(1 ) gb
ij ij ijτ ρ τ ρ τ= − + Δ                            (3) 

In equation (3), if the arc (i,j) is included in the current global-best solution, set 
gb
ik best

m

Q
T

τΔ = , the best
mT means that objection value of the current global-best solution (i.e. 

best makespan), Q means the pheromone strength, it is a user-defined control parameter; 
otherwise, set 0gb

ikτΔ = . 
 



3.5  Steps of the improved ACO with slot- exchange policy 
 
The general steps of the ACO-SE based on the correlation are as follows: 
Step (1): Initialize the parameters, including 1 2 0 max min, , , , , , , , , , ,aco ij mr r M It Qρ τ τ α β τ τ . 

acoM  is the total number of artificial ants, mIt  is the maximum iteration times;

maxτ  and minτ  are the maximum and minimum pheromone; 
Step (2): For each ant, construct a feasible solution in accordance with the method 

proposed in section 3.3; during the construction, when the ant moves at each 
step, we need to update the local pheromone trail with the equation (2). In 
order to speed up the convergence and avoid the stagnation, we use the 
Max-Min rule to control the total pheromone quality: if minijτ τ< , then set

minijτ τ= ; if maxijτ τ> , then set maxijτ τ= ; 
Step (3): Assign all SKUs in the sequence (a feasible solution) to the slots in the zone 

one by one to generate an origination slotting assignment. So, the two SKUs 
which have stronger correlations are assigned to the adjacent slots, they are 
neighbors on the rack and the proximity is very small.  
But in the zone-based system with Return travel policy, the “proximity” of the 
SKUs in the same zone is not important: they just need to be assign to the 
same zone. One of correlated SKUs can be allocated to any location along the 
path from the initial point to the other SKU’s location. A slot-exchange policy 
is needed to ignore the “proximity” in order to achieve a better picking 
efficiency. 
Suppose the average picking time np  is greater than the average time v of 
walking through one column, the origination slotting assignment needs to be 
improved by the following way: For any two adjacent slots N1 and N2, if slot 
N1 has more convenience than slot N2, and 1 2N N

sum sumP P< , then we exchange the 
two SKUs in slot N1 and N2.  The exchange operation does change the 
sequence constructed by ant touring in the diagram.  
We call this procedure the slot-exchange policy and its purpose is to assign the 
SKUs that have more picks to the slots that are closer to the zone initiation 
point. After the exchange operation, a new improved slotting assignment has 
been constructed. 
Use the slot-exchange policy to re-slot; 

Step (4): For the new improved slotting assignment, calculate the objection value (i.e. 
makespan); set the ant who find the current best solution as the current best 
ant, if the gap among solutions is not obvious, set the ant who find the 
smallest standard deviation of completion time as the current best ant. Update 
the global pheromone with equation (3) and the Max-Min rule to control the 
total quality of pheromone; 

Step (5): If the iteration times is more than mIt , STOP and output the result; otherwise, 



go to Step (2). 
 
4    Test and analysis 
 
4.1   Parameters setting and test methods 
 
The ACO-SE is coded in Visual Basic 6 (SP6), the test operating system is Windows 7 64 
bit, 8 GB of RAM, and and Intel CoreTM i5-520 (2.4 Ghz) CPU.  We use the same 
picking system parameters as Kim and Smith (2012) to do our testing (see Table 1). 

Table 1 Picking system parameters 
Parameter/unit Value Parameter/unit Value 
Number of SKUs (K) 540/1080 Correlation strength (C(i,j)) 1,2,30 
Number of zones (M) 10/20 Zone setup time (Zs) /s 43 
Rack Levels (Rl) and columns (Rc) 3,9 Setup time for carton (St) /s 10.8 
Average correlation probability (Fi) 0.05~0.15 Unit walking speed (v)  /s/column 1.4 
Number of slots (N) 54/108 Average line-items per carton (g) 2~20 

Number of cartons (J) 100~700 Unit picking time(bottom/middle/top  3.48/2.9/3.05 
Level of rack) (pn)  /s 

    
With many possible test combinations, we set the basic ACO-SE parameters as follows:

acoM M= , max 10τ = , min 0.01τ = , 0 0.01τ = , 1200Q = , 500mIt = .  The other parameters such as 
, , ,1 2r ,r ρ α β  will affect the results significantly, it is important to do some analysis and 

combination test to decide the proper parameters.  
When 1r is larger, the convergence rate is better, but it is easier to fall into the local 

optimums. When 1r is smaller, the searching speed is slower and it is easier to fall into the 
stagnation. When 2r is smaller, ACO-SE cannot make use of the SKU correlation 
information and the convergence rate and the robustness of solution will be reduced.  
Table 2 shows the results for several combinations of the two search control parameters 
for a random problem (J=250, K=540, M=10, N=54, C(i,j)=2, Fi=0.10).  In the 
“Evaluation” column, “Local optimum” means that ACO-SE fall into the local optimum 
trap, “Slow” means the convergence rate of ACO-SE is slow, “Near-best” means the 
ACO-SE solution is close to the best solution found.  It is clear, when 1 0.5r = ,

2 0.8 ~ 0.9r = , the ACO-SE can get better solution. 
When the evaporate factor ρ is bigger and near to 1 or smaller and near to 0, the 

pheromone will be enhanced to fall into local optimum or weakened to fall into 
stagnation.  Table 3 shows the test result of evaporate factor for a random problem 
(J=250, K=540, M=10, N=54, C(i,j)=2, Fi=0.1), when 0.2 ~ 0.4ρ = , the ACO-SE can 
find better solutions. 

The pheromone factor α  and heuristic factor β  show the impact of pheromone 
traces and correlation strength on the ants’ decisions in selecting the nodes in their paths 



(i.e., SKUs).  When α  is larger, the ants select SKUs that were selected by previous 
ants with higher probability; when β  is larger, the ants are more likely to select the 
SKUs that have strong correlations.  Table 4 shows the combination tests results for a 
random problem (J=250, K=540, M=10, N=54, C(i,j)=2, Fi=0.1).  It is clear that when

3, 1α β= = , the ACO-SE finds the best solutions. 
 

Table 2 Search control parameters setting (part) 

1r  2r  Makespan Iteration Evaluation 
1r  2r  Makespan Iteration Evaluation 

0.10 0.30 2100.91 97 Local 
optimum 0.40 0.90 1888.60 202 Slow, Near-best 

0.10 0.50 1996.92 145 Slow 0.50 0.80 1897.52 149 Near-best 
0.30 0.70 1926.53 302 Slow 0.50 0.90 1865.31 91 Best Found 
0.30 0.90 1884.81 208 Slow 0.60 0.80 1881.98 116 Local optimum 

0.40 0.70 1930.64 44 Local 
optimum 0.60 0.90 1877.72 92 Local optimum 

 
Table 3 Evaporate factor setting (part) 

ρ  Makespan Iteration Evaluation ρ Makespan Iteration Evaluation 
0.10 1892.40 51 Local-optimum 0.60 1887.67 276 Slow, Local-optimum 
0.20 1856.45 68 Best Found 0.70 1865.39 306 Slow, Near-best 
0.30 1860.07 56 Near-best 0.80 1891.30 163 Local-optimum 
0.40 1865.62 73 Near-best 0.90 1890.61 183 Local-optimum 

 
 

Table 4 Search control parameters setting (part) 
α  β  Makespan Iteration Evaluation α β  Makespan Iteration Evaluation 

1 5 1926.31 306 Slow 3 3 1854.81 31 Local-optimum 
2 5 1837.92 269 Near-best, slow 4 2 1874.27 30 Local-optimum 
2 4 1868.11 74 Local-optimum 4 3 1895.23 121 Local-optimum 
3 4 1837.74 127 Near-optimum 3 1 1823.21 96 Best Found 
1 3 1868.80 377 Slow 3 2 1933.89 23 Local-optimum 
2 3 1883.02 188 Local-optimum 2 1 1832.13 110 Near-best 

 
So, we use the other ACO-SE parameters as follows: 1 0.5r = , 2 0.9r = , 0.2ρ = ,
3, 1α β= = .  We use three methods to evaluate the performance of the ACO-SE and the 

correlations impacts on the picking efficiency.  
(1)  Positive test: For a given group of carton lists and average line-items per carton (g), 

we can exploit J and K, and to calculate the makespan using the ACO-SE.  In this 
situation, the correlation strength C(i,j) and correlation probability Fi can be 
exploited from the carton lists.  The positive test is used to test and evaluate the 
performance of ACO-SE including the convergence, CPU time, robustness and 
efficiency.  

(2)  Opposite test: With the method proposed by Kim and Smith (2012), a group of 



random carton lists is generated by controlling the five parameters which include 
J,K,C(i,j),g and Fi. In this situation, we can exploit the correlation relations by 
analyzing these parameters. We will use this method to generate the testing data to 
evaluate the impacts of different correlations on the picking efficiency. 

(3)  Comparison test: we will compare the performance of three methods including the 
ACO-SE, COI and SA-C heuristic.  The steps of COI storage policy based on the 
picks are as follows: first, calculate the i

sumP  for each SKU in a pick wave; second, 
sort the SKUs by i

sumP  in descending order; third, sort all slots by pick time 
(including walk time) in ascending order; fourth, sequentially assign the ordered 
SKUs to the ordered slots.  Since the COI storage policy ignores the SKUs 
correlations, the results can be used to evaluate the impact of the correlations on the 
picking efficiency.  
We use a number of randomly generated problem based on the experimental factors 

with several levels to evaluate the ACO-SE, since the complexity of the problem depends 
on K, J, C(i,j), g, Fi, we control these five parameters to several levels.  The levels of 
each parameter are already shown in Table 1. 
 
4.2  Performance test for small problems 
 
We first use the positive and comparison tests to evaluate the performance of the 
ACO-SE.  For a given group of orders – each order includes 2 to 15 line-items – we 
generate two groups of carton lists with g=5 and g=10 respectively, the first group (g=5, 
i.e. Scenario-I) consists of 216 small volume cartons and the second group (g=10, i.e. 
Scenario-II) consists of 118 big volume cartons.  Thus, for the given orders, the two 
groups of carton lists have different correlations.  Comparatively speaking, the first 
group has bigger C(i,j) and smaller Fi; the second group has smaller C(i,j) and bigger Fi, 
but the C(i,j) and Fi are unknown. We ran the ACO-SE for the two scenarios respectively, 
Figure 3(a) shows the evolution curve for the two scenarios at the initial run-time, and 
Figure 3(b) shows the best found values and the iteration times (Histogram) of finding the 
optimum at each run time in the Scenario-I. 

 

 
(a) Evolution curve for two scenarios at initial run-time      (b) Stability of solution for the Scenario-I 

    Figure 3. Performance test results (Scenario-I: g=5, J=216; Scenario-II: g=10, J=118). 
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(1) Convergence analysis:  The ACO-SE has promising convergence and high 
convergence speed.  Figure 3(a) shows, in the early stages, the ACO-SE shows a very 
high convergence speed, it needs a very few iterations when solution is near to the COI 
solution, and after 70~80 iterations, it achieves a relative stable state.  In theory, when g 
is larger (Scenario II), there will be a more candidate SKUs set A0 which will potentially 
lead to a larger solution space and a slower convergence speed.  However, since the 
problem is small, there is no obvious difference in the convergence speed for the two 
scenarios. 

(2) Improvement on the makespan: The ACO-SE can achieve better picking 
efficiency than COI.  Figure 3 (a) shows that, in the Scenario-I, the improvement 
between ACO-SE (the makespan is 1885.2 s for 216 cartons) and COI (2307 s) is 
approximately 18.28%; in Scenario-II, the improvement between ACO-SE (the makespan 
is about 1791.2 s for 118 cartons) and COI (2205.6 s) is approximately 18.78%.  

(3) Stability of solution: The ACO-SE has a stabile solution and not large fluctuations 
and standard deviations.  We replicate the improved ACO-SE 10 times, as shown in 
Figure 3 (b), the average makespan is about 1887.02 s, the worst makespan (1898.1 s) is 
about 1.59% greater than the best (1865.3 s), the standard deviation is about 8.71 s.  

The average CPU time of 500 iterations is about 3.10 minutes, the average CPU time 
of finding the best solution is about 20~60 s (i.e. 50~150 iterations), it shows a preferable 
convergence speed.  

 
4.3  Impact of correlation on picking efficiency for medium and large 
problems 
 
4.3.1  Impact of the correlation strength 
 
We use opposite and comparison tests to evaluate the impact of the correlation strength 
on the picking efficiency.  In these tests, we set K=540 and Fi=0.1.  72 scenarios were 
constructed based on the different J, C(i,j) and g values and we use the method proposed 
by Kim and Smith (2012) to generate 10 random problems for each scenario (i.e. 720 
problems), and each problem is replicated 10 times with appropriate ACO-SE 
experimental parameters.  

Figure 4 shows the CPU time of the ACO-SE when K=540 and K=1080 respectively.  
From Figure 4, it is clear that the CPU time increases as g, J and K increase; the 
time-difference among between scenarios with different numbers of cartons (i.e. J) will 
increase as the numbers of line items per carton (i.e. g) increases.  Clearly, as expected, 
the ACO-SE will consume more time as the problem size increases. For different problem 
sizes, the ACO-SE only needs about 50~200 iterations to get a satisfied solution. 



     
(a)K=540                                    (b) K=1080 
Figure 4. CPU time when Itm=500, Fi=0.1 and C(i,j)=2 

Tables 5 and 6 illustrate the summary of the average makespans of ACO-SE and COI.   
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Table 5 Solution bounds and comparison between ACO-SE and COI by different C(i,j) 
K J C(i,j) 

Idealized value range /s ACO-SE /s COI/s Improvement percentage /% 
g=5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 

540 

300 
1 

886 
5878 

1405, 
11713 

1925, 
12148 

2443, 
12583 

2658.54 5041.56 6934.22 8445.61 3700.03 6064.89 7863.95 9274.16 28.15 16.87 11.83 8.93 
2 2662.76 5035.85 6953.33 8436.22 3563.24 5890.02 7703.65 9153.23 25.27 14.50 9.74 7.83 
30 2717.67 5063.13 7002.86 8497.15 3410.65 5945.92 77085.6 9110.22 20.32 14.85 9.12 6.73 

500 
1 

1448, 
9768 

2313, 
19493 

3178, 
20218 

4043, 
20943 

4751.81 8829.12 12011.72 14477.87 5904.27 10092.71 13086.04 15499.11 19.52 12.52 8.21 6.59 
2 4738.83 8832.13 12002.03 14497.58 5854.13 10029.01 12859.4 15342.12 19.05 11.93 6.67 5.51 
30 4775.85 8868.93 12109.11 14580.02 6092.23 9851.35 12788.04 15126.91 21.61 9.97 5.31 3.62 

700 
1 

2010, 
13658 

3221, 
27273 

4432, 
28288 

5643, 
29303 

6951.97 12679.58 17107.73 20526.09 8309.88 14267.41 18375.42 21215.68 16.34 11.13 6.90 3.25 
2 6921.18 12683.87 17027.11 20475.01 8327.46 14001.67 18267.89 21366.67 16.89 9.41 6.79 4.17 
30 6899.49 12646.44 17011.45 21025.72 8284.46 13743.76 18470.45 21073.76 16.72 7.98 7.90 0.23 

1080 

300 
1 

464.5, 
2960.5 

724, 
5878 

983.5, 
8795.5 

1243, 
11713 

1433.84 2655.53 3905.14 5036.93 1890.78 3569.33 4879.56 6090.56 24.17 25.60 19.97 17.30 
2 1470.92 2650.82 3913.36 5049.02 1878.46 3502.17 4977.67 6033.44 21.70 24.31 21.38 16.32 
30 1464.45 2726.01 3933.73 5058.12 1970.33 3449.89 4808.22 5990.23 25.68 20.98 18.19 15.56 

500 
1 

745.5, 
4905.5 

1178, 
9768 

1610.5, 
14630 

2043, 
19493 

2394.20 4743.96 6906.18 8786.62 3215.04 5928.07 8245.04 10105.14 25.54 19.98 16.24 13.05 
2 2404.82 4741.63 6919.81 8821.33 3003.98 5905.91 8168.56 10028.89 19.95 19.71 15.29 12.04 
30 2421.73 4730.36 6944.34 8843.36 3282.86 5897.56 8095.42 9926.71 26.23 19.79 14.22 10.91 

700 
1 

1025.5, 
6850.5 

1632, 
13658 

2237.5, 
20465.5 

2843, 
27273 

3474.64 6914.72 9955.86 12637.47 4441.37 8292.45 11382.02 13999.03 21.77 16.61 12.53 9.73 
2 3449.08 6936.32 9977.27 12716.42 4648.89 8170.21 11338.91 14095.02 25.81 15.11 12.01 9.78 
30 3473.48 6925.41 10056.68 12655.51 4375.67 8364.94 11291.04 13976.61 20.62 17.21 10.93 9.45 

Table 6 Average improvement between ACO-SE and COI by random C(i,j) 

K J 
 ACO-SE /s COI/s Average improvement percentage /% 
g=5 10 15 20 5 10 15 20 5 10 15 20 

540 
300 2679.65 5046.84 6963.39 8459.63 3557.97 5966.94 7758.70 9179.20 24.69 15.42 10.25 7.84 
500 4755.46 8843.36 12040.90 14518.43 5950.21 9991.02 12911.16 15322.71 20.08 11.49 6.74 5.25 
700 6924.16 12669.96 17048.61 20675.61 8307.26 14004.28 18371.25 21218.72 16.65 9.53 7.20 2.56 

1080 
300 1456.36 2677.43 3917.36 5047.96 1913.19 3507.13 4888.48 6038.07 23.88 23.66 19.87 16.40 
500 2406.83 4738.61 6923.41 8817.06 3167.29 5910.51 8169.67 10020.25 24.01 19.83 15.25 12.01 
700 3465.69 6925.36 9996.53 12669.77 4488.64 8275.86 11337.32 14023.55 22.79 16.32 11.83 9.65 



Table 7 Solution comparison between ACO-SE and COI by different Fi 
J Fi 

/% 
ACO-SE /s COI /s Improvement percentage /% 
g=5 10 15 20 5 10 15 20 5 10 15 20 

300 

1 2852.31 5248.52 7190.12 8702.47 3511.26 5900.12 7705.61 9161.22 18.77 11.04 6.69 5.01 

3 2805.23 5193.41 7125.68 8623.21 3500.21 5902.46 7712.32 9156.71 19.86 12.01 7.61 5.83 
5 2711.21 5086.02 7010.02 8514.41 3498.44 5896.98 7701.33 9146.91 22.50 13.75 8.98 6.91 
10 2662.76 5035.85 6953.33 8436.22 3563.28 5890.01 7703.54 9153.32 25.27 14.50 9.74 7.83 
15 2625.93 5051.12 6940.71 8460.51 3534.57 5883.63 7707.57 9159.12 25.71 14.15 9.95 7.63 

500 

1 4926.77 9123.33 12291.12 14785.32 5823.34 10001.56 12825.6 15353.23 15.40 8.78 4.17 3.70 
3 4874.15 9035.23 12195.56 14694.15 5833.65 10032.45 12843.67 15332.46 16.45 9.94 5.05 4.16 
5 4799.24 8867.17 12093.44 14575.11 5835.87 10011.11 12829.18 15340.56 17.76 11.43 5.74 4.99 
10 4738.87 8832.11 12002.02 14497.51 5854.12 10029.02 12859.41 15342.22 19.05 11.93 6.67 5.51 
15 4740.22 8822.23 11971.72 14492.01 5852.73 10006.03 12841.09 15372.11 19.01 11.83 6.77 5.73 

700 

1 7185.67 12995.6 17392.15 20697.79 8268.17 14011.14 18115.21 21157.88 13.09 7.25 3.99 2.17 
3 7081.12 12863.4 17187.34 20500.54 8279.45 14014.32 18176.43 21204.67 14.47 8.21 5.44 3.32 
5 6955.31 12783.9 17107.03 20465.92 8258.21 14009.37 18125.45 21242.12 15.78 8.75 5.62 3.65 
10 6921.15 12683.8 17027.13 20475.13 8327.51 14001.71 18267.88 21466.67 16.89 9.41 6.79 4.62 
15 6910.79 12643.1 17068.03 20453.74 8257.78 14007.18 18311.89 21458.79 16.31 9.74 6.79 4.68 

 

Table 8 Average improvement between ACO-SE and SA-C by random C(i,j) 

K J 
ACO-SE /s SA-C /s Improvement /% 
g=10 15 20 10 15 20 10 15 20 

540 
300 5046.84 6963.39 8459.63 5144.11 7282.30 8930.60 1.89 4.38 5.27 
500 8843.36 12040.90 14518.43 9847.52 13509.31 16244.36 10.20 10.87 10.62
700 12669.96 17048.61 20675.60 14698.76 19853.22 23728.66 13.80 14.13 12.87 

1080 
300 2677.43 3917.36 5047.96 2961.54 4547.86 5853.09 9.59 13.86 13.76 
500 4738.61 6923.40 8817.06 5760.47 8441.87 10663.02 17.74 17.99 17.31
700 6925.36 9996.53 12669.77 8681.68 12448.18 15719.00 20.23 19.69 19.40 



In Table 5, the “Idealized value range” means the lower and upper bounds of 
makespan in two ideal conditions.  The Low bound is the makespan when each 
carton visits only one zone to reduce the carton initial setup time St and the pickers 
walk the minimum distance in each zone; the Up bound is the make span when each 
carton visits as much as possible zones and pickers walk the maximum distance in 
each zone.  The Idealized value range is independent on the C(i,j). 

(1) Table 5 shows, the ACO-SE yields better makespans than COI, in general.  
The Maximum improvement between ACO-SE and COI is about 28.15%, which 
means that 135.12 minutes saving can be obtained during each shift (480 minutes).  
In general, for the given J and C(i,j), the improvement percentage decreases as g 
increases, because there will be more slots and zones needed to be visited when g 
increases gradually, which will lead to more walking distance.  The further the 
picker must walk into the zone, the weaker the impacts of the correlation on the 
picking efficiency. 

(2) From Table 5, for the given J and g, when J=5, there is no obvious gap 
between scenarios with different C(i,j) values; when J is larger than 5, the 
improvement percentage decreases as C(i,j) increases.  The correlation strength C(i,j) 
has a little impact on the picking efficiency.  

Furthermore, we present the average improvement percentage of three degrees of 
correlation strength C(i,j) in Table 6.  The cell in Table 6 is indicated by a set of a 
level of the SKUs, a level of the numbers of cartons, and a level of the number of 
line-items. Form the Table 6, the ACO-SE always provides better makespan than COI, 
the average improvement percentage between ACO-SE and COI is shown from 
2.56%~24.69%. In general, the average improvement percentage decreases as the 
numbers of line-item (g) is large, or as the numbers of cartons (J) is large, or as the 
numbers of SKUs (K) is small.  

(3) From Table 5, in general, there is no obvious gap among different degrees of 
the C(i,j), the correlation strength has no obvious impact on the picking efficiency, 
this is because the correlated SKUs just needed to assigned to the same zone, no need 
to be assigned to the adjacent locations, this rule is different from Kim and 
Smith(2012) who concluded that the more correlation strength, the more picking 
efficiency.  With the return travel policy, one of correlated SKUs can be allocated to 
any locations along the path from the initial point to the other SKU’s location. 

The makespan increases as the numbers of carton (J) and line-items (g) are large.  
The makespan decreases as the numbers of zone (M) and the numbers of SKUs (K).  
When K increases, the space of the fast pick area will be enlarged by the following 
ways: to increase the number of zones and pickers, which will increase the space and 
labor cost; or to increase the slots in zones by increasing the rack length or/and the 
rack levels, which will increase the makespan and facilities cost accordingly.  Thus, 
there is a trade-off between time and costs to decision how to adjust the fast pick area. 
 
4.3.2 Impacts of the correlation probability 
 
In this part, we will use the opposite and comparison test to evaluate the impacts of 
the correlation probability (Fi) on the picking efficiency.  The correlation probability 
Fi is defined as the proportion of correlated SKUs with SKU i to the total SKUs, it 



shows that how many SKUs are correlated with SKU i. 
We set C(i,j)=2, K=540, and do some tests on different J, Fi and g.  Totally, 60 

scenarios are constructed randomly based on the different J, Fi and g, we use the same 
method (Kim and Smith, 2012) to generate 10 problems for each scenario randomly 
(i.e.600 problems totally), each problem is replicated 10 times randomly.  Table 7 
illustrates the test results. 

From the Table 7, the ACO-SE always provides better makespan than COI, the 
improvement percentage between ACO-SE and COI is shown from 2.17%~25.71%.In 
general, for the given J and Fi, the improvement percentage decreases as g becomes 
greater, this trend is as same as the previous test results. 

When Fi is less than 10%, the improvement increases as Fi becomes greater; when 
Fi is greater than 10%, the improvement has no obvious difference for the different Fi.  
This is because, in zone-based picking system with return travel policy, there are 
totally 54 SKUs in each zone, so when Fi is greater than 10%, the more correlated 
SKUs have no chance to be assigned to the same zone.  We can conclude that the 
correlation probability has significant impacts on the picking efficiency, which is 
different from the correlation strength C(i,j) which has no obvious impacts on the 
picking efficiency, when there are more correlated SKUs, there will be more 
improvement potentially. 

 
4.3.3  Comparison with SA-C heuristic 
 
Kim and Smith (2012) proposed a Simulated Annealing algorithm using correlation 
interchange for dynamic which was called SA-C heuristic.  Based on the idea that 
SKUs that appear together in the same carton should be located near each other in the 
picking area, SA-C uses the information from the correlated list and performs 
correlated interchange randomly. When there is some improvement, SA-C will keep 
the interchange, otherwise, in order to escape the local optima, SA-C will accept the 
non-improving interchange at some probability hoping to expand the search space and 
ultimately reach a better overall solution. By the comparison between the ACO-SE 
and SA-C, there are some improvement on the CPU time and makespan: 

(1) For the CPU time, when K=540, J=300 and g=10~20, the ACO-SE only needs 
about 20~90 s (which varies based on the size of the problems) to get a satisfied 
solution, but the SA-C needs about 600~2000 s to get a satisfied solution, it means 
that the ACO-SE has better convergence speed than SA-C heuristic for the same size 
problem and needs fewer CPU time.  The reason is, in the each of the iteration, the 
ACO-SE can use lots of correlation information to do some arrangements for all 
SKUs, but the SA-C can only use one piece of correlation information and do at most 
one slot exchange. 

(2) Table 8 illustrates the comparison result between ACO-SE and SA-C heuristic 
when Fi=10%, C(i,j)=1,2,30 at the same probability. It shows that on all scenarios, the 
ACO-SE can reach a better solution than SA-C heuristic for the same size problem 
and the average improvement varies from 1.89%~20.23%.  This is because, the 
SA-C just put the correlated SKUs to the adjacent slots, but in our picking system 
with Return travel policy, the “proximity” of the SKUs in the same zone is not 
important: they just need to be assigned to the same zone.  One of correlated SKUs 



can be allocated to any locations along the path from the initial point to the other 
SKU’s location.  So we use slots-exchange policy to ignore the proximity and 
achieve a better picking efficiency. The comparison results prove that the “proximity” 
of the SKUs is not important. 

It is clear that the average improvement becomes large, as the number of cartons 
(J) is large, number of SKUs (K) is large; but it is difficult to find a consistent trend 
by changing the number of line-items (g).  

 
5  Conclusions  
 
We believe that the slotting problem based on correlations is a fundamental, but 
curiously overlooked problem in warehouse operation optimization. The problem in 
this study is the dynamic slotting problem for a pick-wave zone-based picking order 
system given various scenarios of Cartonization with SKUs correlation. Through our 
research we have focused on the correlation strength and probability among SKUs in 
a pick wave. The problem is NP-hard and the size of a real problem is very large, we 
proposed an ACO with slot-exchange policy to solve the MIP model from Kim and 
Smith [16], and used three methods to test the performance and evaluate the impacts 
of the SKUs correlation on the picking efficiency. Some promising results are given 
as follows: 

(1) The ACO-SE shows promising convergence, makespan improvement, stability 
solution and preferable computing speed (CPU time). For two small problems, the 
improvement on makespan between ACO-SE and COI is about 18.28% and 18.78% 
respectively. The solution of ACO-SE has no large fluctuations and standard 
deviations; the average CPU time of finding a stability best solution is about 20~60 s.  

(2) For the medium and large problems, the ACO-SE provides better makespan 
than COI. The correlation strength has no obvious impacts on the picking efficiency, 
but the correlation probability has some significant impact one the picking efficiency, 
when there are more correlated SKUs, there will be more improvement potentially. 
For the average improvement, the ACO-SE always provides better makespan than 
COI too; the average improvement percentage varies from 2.17%~25.71%. 

(3) By the comparison with the SA-C heuristic, the ACO-SE has better CPU time 
and convergence speed and can achieve a better makespan, the average improvement 
varies from1.89%~20.23%, which proves that the “proximity” of the SKUs is not 
important, they just need to be assigned to the same zone. With the return travel policy, 
one of correlated SKUs can be allocated to any locations along the path from the 
initial point to the other SKU’s location. 

The best slotting depends on how to assign orders to cartons given the numbers of 
orders in a pick wave (i.e. Cartonization) and the best Cartonization depends on how 
to assign SKUs to slots (i.e. slotting). The limitation in this paper determines the 
slotting problem given Cartonization information. It is clear that slotting and 
Cartonization problems affect each other. In the further study, we expect that a 
potential improvement can be obtained by considering the two correlated problems 
systematically. 
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