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Abstract 
 

This paper describes a generic approach for analysis of internal 
behavior of logistic systems based on event logs. The approach is 
demonstrated by an example of event data from the simulation model of 
an automated material handling system (MHS) in a manufacturing 
company. The purpose of the analysis is the identification of design and 
operation problems and their causes, prospectively. As a result, the 
simulation model developer obtains the condensed and ranked information 
on events. These events describe the internal system behavior with 
anomalies pointing at either possible problems or capacity reserves. 

 
1 Introduction 
 
The design of MHS is challenging due to high system complexity and heterogeneity. It 
involves typically elaborate simulations, but the analysis of these simulation results is 
often limited to the acquisition of global key indicators or needs some educated guess 
regarding the location of critical elements, respectively. In particular, the detailed 
knowledge of internal transport processes on sections is usually inadequate. In addition, 
analysis of these systems at runtime is difficult due to a large amount of monitoring data. 
Thus, the (automated) in-depth analysis of logistic systems and their internal transport 
processes during design and operation steps would contribute much to improve their 
performance. 

Although the standard tool material flow simulation answers the question if the 
conceptual design of a system in layout and controlling fits global requirements (e.g. 
system throughput or cycle time), it does not answer the question of the degree of 
fulfillment. The internal performance often is only analyzed intuitively or visually by the 
system developer. Referring to Dangelmaier et al. this analysis mostly depends on the 
experience of experts and coincidence [1, p.4]. 



In [2] a summary of the currently popular view on the theme "Output analysis for 
simulations" can be found. They discuss commonly known statistical methods but only 
use them for the determination of global performance characteristics [cf. as well 3,4]. 
Bratley et al. [5] explain, for example, how significant estimators can be determined to 
evaluate the performance of the overall system. These estimators describe how specific 
characteristics depend on certain global parameters. 

The idea of using event data for the analysis of internal system processes is not new. 
An interesting approach, for example, is presented by Kemper and Tepper [6,7]. They 
rely on the strong (human) capacity for visual perception of correlations. Though 
suggestions for aggregating large amounts of data are depicted, the focus is on the 
representation of the reduced event space with the help of "Message Sequence Charts". 
Another visual approach, which uses self-organizing feature maps, is described in [8]. 
The methodologically closest numerical approach to ours can be found in Better et al. [9] 
. They develop a combination of dynamic data mining and optimization techniques in 
order to reduce the required number of simulation runs for the optimization of system 
parameters. The objective therefore is the troubleshooting in the modeling process, but 
the internal process analysis. A way to model-based process analysis, which is based on 
the layout of a bottling facility, is discussed in [10]. However, this approach is limited to 
certain types of errors on the targeted inspection of single components. 

In addition to the listed graphically approaches for an internal process analysis based 
on reduced event data also numerical approaches exist in other domains. In [11] and [12] 
for example, methods for event-based analysis of business processes are discussed. The 
focus of "business process mining" in the first instance however, is to create adequate 
models and recognize relevant process steps. 

It should be noted that current methods for various analyses provide very good 
results. Visual procedures facilitate the analysis and global performance parameters are 
determined by the means of aggregated data. However, these methods allow no access to 
single events and thus no targeted search for internal anomalies on sections of automated 
transport systems. 

An approach for the numerical analysis of in-house MHS based on information from 
event data has to fulfill different requirements. Amongst others, the heterogeneous 
system objectives and system requirements have direct influence on the analysis. For 
example, total flow is relevant for the assessment of transport processes in a bottle filling 
machine. For baggage handling systems additionally maximum throughput time is 
important, for the single bottle this is not significant. A more detailed explanation of the 
problem and of the overall concept for (semi) automated material flow diagnostics can be 
found in [13] and [14]. The marking in Figure 1 (rule base – symptom detection) shows 
the classification in the overall concept of the method module presented in this article. 
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Figure 1: Analysis workflow 

 
2 Event Data Modeling and Characteristic Values 
 
Detailed analyses of simulation runs would be possible by means of logging discrete 
events with subsequent analysis of the event logs (traces). Event logs often are available 
in real operating systems and may be a valuable source of information about the internal 
system behavior. The analysis of event logs may be challenging due to the different 
properties of MHS. In particular, the following challenges for the analysis method can be 
stated: 
 

• great amount of log data 
• different logging methods and various information sources 
• different amount of information 
• varying viewpoints and purposes implicated by each expert 
The goal of the overall concept of material flow analysis is to generate detailed 

information about the considered system and its behavior by only using event data. This 
paper considers the minimum knowledge level, where the event only contains basic in-



formation (kernel attributes) and no further characteristics of system elements are known. 
These kernel event-attributes are namely: 

 
• time stamp of event 
• identifier of the component where the event was produced 
• identifier of the load or action that triggered the event 
 
This consideration level covers the most basic aspects that are common to all logistic 

systems. Along with that, including further event and system information is still possible. 
Whereas the analysis of results from conveyor system simulations serves as example, the 
analysis principles are also transferrable to other applications. 

To enable the generic analysis of different systems, the system parameters and 
expert knowledge have to be formalized in a common model. An extended state-
transition model for description of the system elements and their runtime parameters is 
proposed. It is supposed that a state-transition model is a least common denominator of 
different logistic systems, since it complies with the nature of logistics as a sequence of 
transportation actions. The extended state-transition model (fig. 2) consists of entities 
(states, transitions, loads etc.), each of which possesses further runtime parameters. 
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Figure 2: Elements of the extended state-transition-model (eSTM) 

Each entity of the model has parameters of the following types: 
 



• Static parameters represent essential properties of the system and do not change 
over time. Typical static parameters are e.g. identifier, vertex degree (in degree or 
out degree, i.e. the sum of incoming or outgoing transitions) of the state. 

• Dynamic parameters change over time and are calculated in proper time intervals. 
These are e.g. the transportation time of a load, average inter-arrival time of loads 
at a state in some time interval and so on. 

 
The static parameters may also describe relations between entities. For example, the 

parameters source and destination of a transition describe the corresponding states. 
Therefore, the set of static relations between entities describes the topological model of 
the logistic system. Additionally the parameters may represent absolute (e.g. 
transportation time of load) and relative values, which depend on further parameters. 
 
3 Analysis of Internal Transport Processes 
 
3.1 General Aspects 
 
The main objective of the analysis is to identify anomalies on sections in the transport 
process, although the global parameters of the entire system indicate no wrongdoing. 
Based on the calculated run-time parameters different rules can be used for detecting 
symptoms of internal system errors. The rules for detection of suboptimal internal 
behavior or capacity reserves can be divided in the following types according to the 
method of their definition: 
 

• threshold-based rules (requires additional meta-information) 
• anomalies (statistic outliers) 
• combination of several rules different types 

 
Tests of the parameters and rules for the identification of anomaly events indicated 

beside functionality the need to characterize the anomaly events. For a large base of 
events and a corresponding large number of identified anomalies, the characterization of 
anomaly events gives detailed information about their relevance to internal behavior. 
Criteria for the characteristic of anomaly events are for example: 

 
• Differentiation to parameter value (e.g. magnitude of the deviation from normal 

behavior or threshold) 
• Distinction regarding to the place in the material flow system (e.g. primary or 

secondary path, network analysis and evaluation of the anomaly location, for 
example based on the robustness of the graph or by using the theory of complex 
networks [15,16]) 

• Anomaly-frequency of moving objects (e.g. the first anomaly event from a 
transport unit is possibly less critical than the last one) 



• Anomaly-frequency of stationary objects (e.g. the first anomaly event on a state, a 
transition or a path is possibly less critical) 

• Anomaly-cluster (e.g. anomaly events on the same object in the time period) 
 
The chosen examples show, besides the background of the evaluation step, the 

evaluation method has to be object-based, analog to the parameters and identification 
rules. A more detailed presentation of the evaluation approach can be found in [17]. The 
anomaly evaluation is strongly associated with the identification step. If several 
anomalies are detected on different objects a detailed analysis of the selected objects 
defined for specific periods of time is possible, based on the evaluation results. 

Essentially the paper elaborates a rule for the second type (see above) in detail by 
using an example in capture 3.3. This rule is an adaptation of a method of statistical 
process control (SPC) on the considered problem and is described in the following 
chapter. 
 
3.2 Adapted SPC Approach for Anomaly-Identification  
 
For the identification of events which differ from normal behavior, a modified quality 
management approach is proposed. The originally for quality control areas applied SQC 
method uses random samples from manufacturing processes. These samples together 
with some statistical devices are thus used to get conclusions about the quality of the 
processes. If this happens in terms of a process inspection during manufacturing it is 
called Statistical Process Control - SPC [18, p.27]. 

SPC differentiates between a process under control and out of control situations. If 
the process state is stable and therefore its mean values and variances of the characteristic 
values as well, the process is called under control. However, out of control situations 
exist when the process state and the distribution of its characteristic values changes 
significantly [18, p.22-23]. In SPC two different kinds of possible process variations are 
identified: the common ones, which are unavoidable and not assignable, and the special 
ones, which are assignable for one defined cause. The common ones are caused by 
unavoidable process deviations within the process itself due to materials being processed, 
the environment or the performance of staff. If only this kind of deviations occur, the 
process distribution is assumed to be varying according to a constant mean (process is 
under control).  However, special process deviations (e.g. defective tool) mean that the 
process is out of control and the cause is assignable [19, p.2]. SPC method is already used 
for simulation studies to define the end of the warm-up period [19]. 

The equality of out of control situations with changes in state and abnormal/ 
suboptimal system behavior on sections respectively, allows adequate use of the SPC 
method. The adapted Statistical Process Control approach for anomaly event 
identification will be explained in general in this section and in chapter 3.3 it will be 
demonstrated by using an example. 



Single event data iY  first are merged into vector Y and describe a time series, where 
m is the total number of observations and iY  the ith observation. 
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The SPC method has two basic assumptions to the data: (A) the data has to be 
uncorrelated and (B) normally distributed. Since that in MHS data typically is correlated 
it has to be transformed to quasi-uncorrelated data. An approved approach to deal with 
that problem is the batch means method [20, p.450]. 

In the first step the data is divided into sections of defined length, the so-called 
batches (h∈H). The goal of this is to generate a time series of batch means ( hμ ) because 
correlation by trend decreases with an increasing batch size (k) [21, p.459]. Starting value 
of the batch size (k) is (k=1). If at least 20 batches exist ( 20≥H ), batch means can be 
calculated ( hμ ). The result is a time series of batch means ( y ) with the number of (b) out 
of batches (h) with the size of (k), generated of the event vector (Y) with m single events 
(i) 
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For this approach the main difficulty is to find the right batch size (k). Thus the 

series of the resulting batch means has to fulfill the requirements (A) and (B). One 
method to determine the correlation between batch means is the Von Neumann test. In 
this test the batch size is doubled until a pre-defined reference value is reached [22,23]. 
Alternatively the calculation of lag 1 autocorrelation can be used instead of the Von 
Neumann test. Referring to this rule of thumb from Robinson the requirement for 
uncorrelated data is fulfilled as soon as the lag 1 autocorrelation becomes smaller than 
“0,1” [19, p.441]. From a statistical point of view the consideration of just lag 1 
autocorrelation by far is not enough to gather uncorrelated data from it, since correlations 
of higher degrees still would have to be considered, too. For the SPC method this 
assumption is sufficient.  

Additionally the batch size (k) has to fulfill the requirement for normal distribution 
of the batch means. Known methods can to test for normality are e.g. the Kolmogorov-
Smirnov test [24, p.269-271] or the Anderson-Darling test [25, p.765-769]. Another 
method is the chi-square test which is used in this article [3, p.357-363]. If the batch size 
(k) is determined by lag 1 autocorrelation and the means of the resulting batches (h) fit 
requirements of the chi-square test, the calculation of the control limits (CL) can begin. 
These control limits give information about if an out of control situation exists or the 
considered process is under control. 



Afterwards mean value ( μ̂ ) and standard deviation (σ̂ ) of all batch means are 
calculated to determine the estimators for the control limits (CL). With the help of these 
estimators, three sets of control limits (CL) are calculated (3 pairs of upper and lower 
control limits): 
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The second term of formula (3) as a function of z in the following will be considered as 
z-sigmaUP and z-sigmaLOW for the upper-/lower control limit, respectively. On the basis 
of pre-defined rules regarding the behavior relative to the control limits, out of control 
situations can be detected [27 in 26]: 
 

i. One point plots outside of the 3-sigma control limit. 
ii. 2 out of 3 consecutive points plot outside of one 2-sigma control limit. 
iii. 4 out of 6 consecutive points plot outside of one 1-sigma control limit. 
iv. 8 consecutive points plot on one side of μ̂ . 

 
Points 2 and 3 refer to one certain control limit (either up or low). That means that if 

2 consecutive points plot for example firstly over an upper and secondly under a lower 
control limit this would not be an out of control situation. The visualization in Figure 3 
shows an example for that with using stochastic data. 
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Figure 3: Example of SPC output data visualization 

 
Thus μ̂  represents normal behavior and µ the series of batch means. For anomaly 

event identification for automated transport processes with continuous handling 
equipment therefore a difference bigger than 3-sigmaLOW between μ̂  and the optimum 
(e.g. shortest transport time between 2 event locations) is a hint for continuing overload 
on a certain section. 



Compared to quality management, for the analysis of parts of transport processes 
within a material flow system all deviations have to be considered. On the one hand the 
control limits could be used to evaluate deviations and on the other hand to determine a 
range of tolerance around the calculated normal behavior. For the reason that the rules to 
determine out of control situations are crucial for anomaly event identification, they have 
to be adjusted for the certain system if necessary. Adjusted rules for example could be 
defined as follows: 

 
i. Analysis of all deviations outside of 3-sigma control limits. 
ii. Analysis of deviations between 2- and 3-sigma control limit in the following case: 

a. 4 out of 6 consecutive batch means plot in between. 
iii. Analysis of deviations outside of the 1-sigma control limits. 

b. 6 out of 8 consecutive batches means plot in between. 
iv. 10 consecutive points plot on one side of μ̂ . 
 
This parameterization is object of research. The goal is the definition of general 

criteria for the creation of the rules. At this point experiments with different sets of data 
from different systems are executed to test how far specific system attributes or the 
technical configuration of conveyor components on single sections can deliver evidence. 
To sum up the steps of the adapted SPC method for anomaly event identification are 
visualized in a flow chart (Figure 4). 

The SPC method for the considered objects in a defined time interval always should 
be executed for different parameters simultaneously. On the one hand this increases the 
result certainty and on the other hand the behavior on one section cannot be described 
completely by just one parameter. After the explanation of the SPC method as an 
approach for the identification of anomaly events, the method will be validated by an 
example in the next section. 



 
 

Figure 4: Flowchart of modified SPC method 



3.3 Example 
 
The following example shows the application of the adapted SPC method. The used data 
has been generated by a simulation model from manufacturing company. Figure 5 shows 
an extract of the network of the transport system the example is based on. 
 

 
Figure 5: Extract of the network of the sample transport system 

 
The sample has been chosen because it is one of the most busy and thus most critical 

areas in the process system. The bottleneck of this sample is the merge where loads 
which use the marked piece of track between start and end point are often delayed by 
other loads entering from the southern track the bottleneck. Both streams (eastbound and 
northbound) are main streams of the facility, which puts special attention to this 
intersection. 

With the knowledge of the network structure of this example, a big variability 
outside of the statistical normal behavior can be expected as a result of the adapted SPC 
method for anomaly identification. 

The data base of the example consists of about 250 loads which have used the 
marked piece of track. Notable, more loads do not yield a better result. The 
TransportTime is the time the loads needed on their way from Start to End (see Figure 5 
above). These 250 events have been put together in batches to find the right batch size 
which fits autocorrelation and normal distribution requirements. The following table 
shows the results for lag-1 autocorrelation and chi-square test for normal distribution for 
the different batch sizes (k). 

 



Table 1: Test results for different batch sizes 

Batch size 
(k) 

Test for lag-1 
autocorrelation 

Chi-square test for normal distribution 

r1 Χ2-value (cum.) Χ2-limit (95%) Χ2-limit (99%) 
1 0.0165629  199.0711  16.9190 21.6660 
2 ‐0.070387332  45.1385  15.5073 20.0902 
3 0.036336055  22.5213  14.0671 18.4753 
4 ‐0.05701343  11.9010 12.5916 

 

16.8119 
 

Since a batch size of 4 events per batch fulfills both requirements, the calculation of 
the SPC parameters and the process related control chart as well can be calculated on this 
basis. The result graphic is shown in Figure 6. 
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Figure 6: SPC control chart 
 

With having the attributes of the example network in mind, the batch means outside 
of the upper 3 sigmaCL have to be considered as very critical. These are probably at least 
small traffic jams where loads had to wait for other loads to pass the merge at the 
bottleneck. For this example it is reasonable to look at the first modified rule only 



because this already identifies a huge amount of anomalies. As a result of the adapted 
SPC method for each anomaly in the time series of the batch means a group of events can 
be identified which characterize the duration of time of temporary blockings (3 sigmaUP) 
or performance reserve (3 sigmaLOW). Now it is possible for the analyst to have a closer 
look at single events which are part of the batch mean outliers and to evaluate the trend of 
different parameters regarding certain objects as well. 

In this example only the dynamic parameter transport time has been considered. The 
principle stays the same for any other parameter as e.g. InterArrivalTime or load counter. 
For a detailed analysis of anomalies it is necessary to investigate other parameters as well 
since the system behavior cannot be described by just a single parameter. Depending on 
the goal of the analysis or the most important system requirements a prioritized analysis 
based on different parameters is considerable.  
 
4 Summary and Prospects 
 
The paper presents a methodological approach to improve performance and sustainability 
from automated material flow systems for in-house logistics, based on event logs. A 
simulation study or running system generates a huge amount of data. With increasing 
amount of data the available information potential is not fully used. This article proposes 
a (semi)automated procedure for the evaluation and identification of system 
characteristics on the basis of these event data. The focus of this paper is an adapted 
statistical process control approach to identify anomalies. 

As a result of the overall concept of material flow diagnostics, the simulation model 
developer or system operator obtains the condensed and classified information on events, 
which describes the internal system behavior with anomalies pointing at possible 
problems or capacity reserves. The presented method allows the systematic search and 
evaluation for anomaly-events in the internal behavior of automated and tracked in-house 
logistic systems. Figure 7 shows a screenshot of a software prototype and an example for 
visualization of the analyses results. This prototype software is developed in cooperation 
with the Chair of Technical Information Systems of Technische Universität Dresden in 
the research project. 

One aspect of the future researches focus on the use of additional event information 
(e.g. transport priority for specific loads). In contrast to the previous question "What 
information can be obtained from the standard event attributes?" will the question asked 
which event information are necessary for the desired analysis. 
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Figure 7: Example of thermic picture result-visualization in the prototype 
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