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Abstract

Driver retention has been cited as one of the primary motivating
factors for the implementation of relay networks for full truckload
transportation.  The strategic design of such networks considering
important operational factors such as limitations on load circuity and
equipment balance has been previously studied in the literature, however
driver scheduling has not been explicitly considered in routing decisions.
We present a prescriptive modeling approach that uses mathematical
programming in conjunction with a decomposition-based algorithm to
select feasible duties that consider current hours-of-service regulations and
assign them to drivers domiciled at relay points in the network to cover
truckload demands during a given planning horizon. Computational results
are presented for randomly generated problem instances along with areas
for future research.

1 Introduction

Driver retention is one of the most significant challenges in full truckload (TL)
transportation [1]. TL carriers commonly use a direct point-to-point (PtP) dispatching
system for the movement of freight; that is, loads are picked up at their origin and moved
to their destination by a single driver. Under this system, drivers spend a significant
amount of time on the road given the long distances that they need to cover and the
difficulty finding appropriate backhaul trips. Some estimates put this number at two or
three weeks at a time [1]. As a result, drivers perceive a reduction in their quality of life
and they tend to quit; typical driver turnover rates for TL carriers exceed 100% annually
[2]. For this reason, driver retention has motivated the analysis of alternative dispatching
systems for TL transportation. One of the alternatives is to install a network of relay
points (RPs) where drivers and trailers can be exchanged. A network of RPs would allow
truckloads to continue moving to their final destinations, and the drivers to return home



more frequently as described in [3], [4], [5] and [6]. This would resemble the operations
of LTL carriers except that freight would not need to be sorted at RPs [5]. Driver
turnover rates for LTL carriers are significantly lower than for TL carriers, approximately
20% annually [2].

The configuration of a relay network (RN) would be similar to a hub-and-spoke
network. In this network, each truckload must stop at one or more RPs while being
transported from its origin to its destination. For example, Figure 1 shows an illustration
of a RN where truckload ij is moved from origin node i to destination node j through a
series of three relay points.
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Figure 1: Relay Network for Truckload Transportation

The strategic design of these networks considering important operational restrictions
such as limitations on load circuity, equipment balance and driver tour length has been
previously studied in [5], [6], and [7]. However, driver scheduling has not been explicitly
considered in routing decisions, and the basic assumption made up to this point is that
once the RN is designed and the routes for the truckloads are selected, the assignment of
truckloads to drivers domiciled at the RPs can be made easily and in a way that allows
them to return home frequently.

However, there are several factors that require driver scheduling to be considered
explicitly. First, hours-of-service regulations for the trucking industry enforce specific
rules that are important when determining how to assign drivers to loads. The recent
addition of new rules for driver management makes this an even a more challenging
problem for the carriers. Second, driver shortage has been consistently listed as one of
the top six concerns for the trucking industry during the past seven years [8]. The use of
relay networks for TL transportation will only help to alleviate this problem if the
assignment of drivers to truckloads is explicitly considered along with other strategic and
tactical decisions for the purpose of obtaining appropriate driver tour lengths. This is
important to retain drivers, especially since that there is an estimated shortage of 125,000
drivers in 2011 as reported in [9].

The issue of scheduling drivers is relevant to other logistics operations that use
network based configurations. There is potential to extend this research to consider the
needs of less-than-truckload (LTL) carriers and third party logistics providers, as well as
to provide a means to assess the effect on cost and performance of utilizing shared



facilities and transportation equipment as proposed by collaborative logistics efforts like
the Physical Internet initiative [10].

In this paper, we present a new modeling approach for selecting duties — a series of
loads to be moved and rest periods between movements for drivers that originate and
terminate at a particular domicile — and the assignment of these duties to drivers based at
RPs in a relay network for TL transportation. One of the contributions of our work is that
we conduct a preliminary analysis to explore the effect of freight lane volume and time
away from domicile allowed for drivers on the characteristics of the solutions obtained.
This is an important step in understanding the tradeoffs of operating using a relay
network structure as compared to current PtP dispatching. Also, having a model for
incorporating these important tactical decisions in TL dispatching planning is another
step towards making relay networks applicable in practice, and understanding how relay
networks can be incorporated in collaborative logistics efforts.

The remainder of this paper is organized as follows. In Section 2, we review
previous research in relay network design and driver scheduling in the trucking industry.
In Section 3, we present the technical approach for the selection and assignment of duties
for drivers to cover truckload demand. Section 4 describes the computational
experiments completed to assess the performance of our proposed approach and analyze
the effect of different characteristics of this problem on the solutions obtained. Next, in
Section 5, we highlight the major findings of our research and conclude by discussing
areas for future work in Section 6.

2 Problem Description

2.1 Literature Review

The scheduling of drivers in the trucking industry depends on the dispatching system
used. TL carriers commonly dispatch loads assigning one driver to a single load from
origin to destination using PtP dispatching. On the other hand, LTL carriers use a hub-
and-spoke system in which drivers are assigned to smaller loads with multiple origins and
destinations and use the hubs for sorting or consolidation [1]. Although these two types
of operations are intrinsically different, there are some studies in the literature that focus
on the design of relay networks for TL transportation. The motivation behind these
studies is to improve driver retention by using a configuration that would allow drivers to
return home more frequently. Most of the early work in relay network design developed
descriptive simulation analyses of hub-and-spoke networks and alternative dispatching
methods for TL transportation such as the ones presented in [1], [3], and [4]. These
studies explored different strategic and operational aspects of RN design and
demonstrated the feasibility of such systems. More recently, prescriptive models have
been proposed for this problem. Uster and Maheshwari [5] and Uster and
Kewcharoenwong [6] propose a mathematical formulation for the strategic design of a
TL relay network and develop heuristic and exact solution methods. However, important



operational constraints such as limitations on load circuity are relaxed and the modeling
approach is intractable for realistically sized problem instances. Vergara and Root [7]
propose a composite variable model for the design of relay networks that implicitly
incorporates the difficult operational constraints in the definition of the variables. In
particular, the variables used in their model represent feasible truckload routes; this
modeling approach allows them to solve largely-sized problem instances efficiently. A
similar modeling approach can be used for scheduling drivers needed at the RPs of the
resulting relay network to account for hour-of-service regulations and the difficult cost
structures that exist in the driver scheduling problem.

To this point, the majority of the research on driver scheduling in trucking has
considered LTL operations. Erera et al. [11] present a scheme for the dynamic
management of drivers for a major LTL carrier that combines greedy search with
enumeration of time-feasible driver duties. Their approach is capable of generating
driver schedules that satisfy several operational driver constraints efficiently. In Erera et
al. [12], the authors assign drivers to home domiciles in an LTL trucking terminal
network. They use an iterative scheme to allocate drivers to domiciles and to determine
drivers’ bids while satisfying hours-of-service regulations and union rules that restrict
driver schedules. Finally, Erera et al. [13] provide a computational approach for the
creation of operational schedules for the tactical load plans that are used by an LTL
carrier. The scheduling approach presented in this research creates dispatches for loaded
trucks between terminals with specified time windows, and then covers all dispatches
using cyclic schedules for drivers. The authors emphasize the idea that developing
detailed operational schedules allows the estimation of operational costs for a given load
plan more accurately along with the evaluation of important performance metrics. All of
these studies reinforce the idea that driver scheduling is a very challenging optimization
problem, due largely to the challenges of incorporating operational restrictions such as
hour-of-service regulations and the difficulty estimating the costs needed for the model.

A recent contribution in driver scheduling in the context of TL trucking is the work
of Goel and Kok [14]. They consider the traditional PtP dispatching system and provide
a model for scheduling drivers according to the sequence of time windows for the loads
that are included in a tour. Although they explicitly consider hour-of-service regulations
in their model, their work is only applicable for the PtP dispatching system and does not
account for the new rules that have been recently announced to go into effect starting in
the second half of 2013 [15].

2.2 Problem Statement

Although the problem we propose to solve is motivated by the TL trucking industry, we
anticipate that our model can be used by other systems that utilize drivers to move freight
through hub-and-spoke networks. As such, the problem is defined as follows, given a
relay network and the associated freight movements between relay points, determine the
number of drivers required at each domicile RP, and how to assign drivers to loads



without violating operational constraints such as hour-of-service regulations, a carrier-
established limitation on the time away from domicile allowed for drivers, and service
requirements to ensure on-time delivery of loads. This problem is solved within the
context of TL trucking as described in the following section.

3 Technical Approach

Our proposed technical approach decomposes the driver scheduling problem in a series of
smaller problems that are solved sequentially. The following subsections describe the
characteristics of our proposed approach.

3.1 Decomposition Approach

Our approach assumes that time-sensitive freight in a hub-and-spoke network must be
transported within pre-specified time windows. Recall that our motivating case is TL
relay networks, but such problems arise in other contexts as well. Our procedure assumes
that the loads and their time windows are each given as input, and that driver duties must
be devised and assigned to drivers to transport this freight. Figure 2 shows the main
building blocks of our technical approach.
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Figure 2: Decomposition Algorithm for Driver Scheduling in Truckload Relay Networks

The driver scheduling problem has three main subproblems: the generation of
duties, the selection of duties to be used in the solution, and the assignment of these
duties to individual drivers. To generate duties, information about the loads and their
time windows is used as input. Recall that duties are a sequence of loads that an
individual driver transports; this sequence of loads must begin and terminate at a driver’s
home domicile. The feasibility of a driver duty depends both on hour-of-service



regulations and a carrier-established limitation on the number of days a driver can be
away from his or her from domicile. We refer to the latter limitation as time away from
domicile (TAFD), and in this research explore the effect of this important design
parameter since it dramatically affects driver retention because excessive TAFD
negatively affects a driver’s quality of life. We detail the generation of driver duties in
Section 3.2.

These duties then become the variables in our modeling approach that selects a set of
optimal duties needed to satisfy the demand in the network while minimizing operational
costs. This optimization model is called Duty Selection Model (DSM), and is described
further in Section 3.3.1.

Since duties must begin and end at a driver’s home domicile, the selection of duties
partitions the duties and their corresponding loads into those that begin and end at each
domicile. We therefore can consider how to assign drivers to each of the individual
domiciles independently. To do this, we develop a mathematical model that is used to
solve the Driver Scheduling Model for Each Domicile (DRSCM). This is described in
Section 3.3.2. This model determines the minimum number of drivers required at each
RP and assigns selected duties that start at this RP to these active drivers during a
specified planning horizon. Once the number of drivers required at each RP is obtained,
the operational cost of the system can be estimated using a fixed cost for the active
drivers and the routing and lodging cost previously obtained from DSM.

3.2 Duty Generation

The generation of duties is the first step to solving the driver scheduling problem.
The duties that we generate will become the variables that are subsequently used in the
models introduced in Section 3.3. In this research, we use an enumeration-based
procedure for the generation of our variables. For this purpose, we define templates —
predefined duty patterns that can be assigned to drivers domiciled at a RP in the relay
network. When enumerating these templates, the combination of loaded movements and
empty/bobtail movements in a single duty need to satisfy service requirements for the
loads that are being transported in addition to the hours-of-service regulations to generate
a feasible duty. We only generate a duty if it can satisfy the time window requirements
for earliest dispatch and latest arrival of the loads included in it.

We implemented an algorithm to check the feasibility of each of these templates for
each combination of loads in the network. If the feasibility requirements are not satisfied
for a given template, then those variables are not included in our model for duty selection
(DSM). By considering hour-of-service regulations, the limitation on time away from
domicile and the satisfaction of service requirements implicitly within the definition of
the variables, we do not need to include them as constraints in our mathematical
formulation of DSM.

We use two primary types of templates to generate duties: out-and-back and triangle
templates. Out-and-back templates account for movements between two relay points,



while triangle templates consider visiting three relay points. Figure 3 shows an out-and-
back template for a duty that includes two loaded movements: one from domicile RP i to
a RP at node j and the other back from j to i. Depending on the distance between nodes i
and j and the time windows of the loads, this template type is able to generate two
different types of duties. A short duty is generated if the travel time between i and j
allows a driver to drop-off a load at node j and pick-up another load at this location that
will arrive at node i before exceeding a limit on the number of hours that can be driven in
one workday, w. Alternatively, a long duty of this template is generated if the load from j
to 7 is dispatched after the driver rests for a sufficient time (z) as required by the hours-of-
service regulations at node j. These long out-and-back duties keep drivers away from
their home domicile for two days. Note that we can create an alternative template by
replacing one loaded movement with an empty/bobtail movement to balance drivers in
the relay network in case there are no backhaul loads. To create duties with
empty/bobtail movements we need to check the feasibility of the duty by computing the
travel time required between the two relay points using the Euclidean distance and an
average speed for the trucks.

Out-and-Back Template #1
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TAFD = 1 day: time + rest+ time,; < @

TAFD = 2 days:time; + rest + time; < 2w+7

Figure 3: Example Template for Duty Generation

The number of templates needed to enumerate duties depends on a limitation on the
TAFD. This is a design parameter that must be established by the carrier. In the present
work, we consider templates that are able to generate duties that keep drivers away from
their domiciles for up to 3 days. In our computational results in Section 4, we discuss the
effect of different values of TAFD on the performance of our approach and the
characteristics of the solutions obtained. Figure 4 shows the template types that we used
in this research.

In the algorithm that we implemented to generate duties, the cost associated with
each feasible duty is computed based on the miles driven and the number of rests away
from domicile (i.e., lodging expenses or sleeper berth use compensation). Having a cost
estimate for each complete duty is another advantage of our proposed approach. Other
types of formulations would require building a duty through a mathematical model that



makes several decisions and has difficulty capturing the non-linear cost structures that are
present in this problem.
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Triangle Template #1 Triangle Template #2

TAFD = 1 day: time, + rest + time;, + rest + time,; < @
TAFD = 2 days:time; + rest + time,, + rest + time, < 2o+7

TAFD = 3 days:time;, + rest + time;;, + rest + timey, < 3w +2t

Figure 4: Set of Templates for Duty Generation

3.3  Model Formulation

The proposed decomposition approach and the mathematical formulation of DSM and
DRSCM assumes that the duties have been generated as described in Section 3.2, and
uses the following notation:

Sets
N =set of nodes k&
T = set of truckloads ¢



L =setofloads /, |L| > |T]

D = set of duties d

J = set of time periods j

I, = set of drivers i at node &

D(!) = set of all duties d that contain a load /, D(I) € D

Dy(j) = set of all duties d that start at node k and occur during time period j, Di(j) € D
Oi(d) = set of duties that start at node & and are incompatible with duty d, Oi(d) € D
D’ = set of duties d that represent extended rests for drivers, D’ S D

Parameters

® = length of planning horizon (in number of time periods)
cqs=costofdutyd,VdeD

¢; = cost of activating driver i, V i € I;

Variables
= {1 if driver i is assigned to duty d
! 0 otherwise
_ {1 if driver i is active
' 0 otherwise
2= {1 if duty d is selected
0 otherwise

3.3.1 Duty Selection Model (DSM)

In this section, we present the mathematical formulation for the problem of selecting
driver duties to cover truckload demands while minimizing operational costs in the
network (i.e., Step 2 of our proposed algorithmic approach). This approach assumes we
have the set of duties generated as described in Section 3.2.

min Z CiZq )

deD
subject to
Z Zd:1 A l eL (2)
deD(])
z; €{0,1} VdeD 3)

This is a set partitioning formulation where the objective function (1) minimizes the
total cost, including transportation costs and lodging for drivers who spend a required rest
period away from their domiciles. Constraint (2) enforces the satisfaction of load



demands across the network. Finally, Constraint (3) requires all variables in the model to
be binary. Recall that since duties have been generated to ensure feasibility given that
hours-of-service regulations, carrier requirements, and service requirements for the loads
are implicitly considered during the generation of the variables as described in Section
3.3, we do not need to include these constraints in the DSM explicitly.

Recall that each duty begins and ends at a domicile, and contains one or more loads
that must be transported. Therefore, the selection of duties essentially makes a unique
assignment of loads to drivers who are based at a specific domicile. Since each domicile
has a collection of loads that must be moved by drivers at that location, the problem can
be decomposed to consider each domicile individually without loss of optimality. Our
solution methodology therefore uses the solution obtained from DSM as input for the
scheduling of drivers at each domicile in the network using the mathematical formulation
for DRSCM presented in the following section.

3.3.2 Driver Scheduling Model for Each Domicile (DRSCM)

Assuming D;* represents the set of optimal duties selected in DSM that start at domicile
k, the mathematical formulation for scheduling drivers based at domicile k& follows.

min Z Y “4)

i€ly
subject to
zzxw=l VdeD, (5)
i€ly,
Xl-dzl VlEIk,]EJ (6)
deD; ()
0 _ 7
s (g)n viek v
dEDk
Xgtx, <1 VdeD;,d€Q,d,i€l ®)
Zx,.dzl Viel, ©)
deD’

V<Y, i=1, ..., -1 (10)



xy,€{0,1} Viel,deD; (11)

y,€{0,1} Vi€l (12)

In this mathematical formulation, the objective function (4) minimizes the number of
drivers needed at RP £ to handle the optimal duties that start and terminate at RP %.
Constraint (5) requires assigning one driver to every duty that starts at RP &. Constraint
(6) enforces that no driver can handle more than one duty at a time. Constraint (7)
requires that a driver can only be assigned to duties if the driver is active. This constraint
relates x;; and y; variables, and limits the number of duties assigned to a driver during the
planning horizon to satisfy industry regulations (here we assume that the time periods for
our model are one hour long). The limitation that no driver can handle two incompatible
duties — duties that start at the same domicile before the minimum rest period for a driver
is completed — is enforced by Constraint (8). Constraint (9) requires that one extended
rest period at the domicile has to be assigned to each driver before the end of the planning
horizon. This constraint captures the 34-hr restart rule that exists in current hours-of-
service regulations for the industry, and can be easily adapted to incorporate the changes
that will come into effect in July 2013 according to [15]. Constraint (10) is a symmetry
breaking constraint that allows activating a driver only if the immediately higher-
numbered driver is active. This constraint helps us to avoid the combinatorial effect of
alternative solutions that represent the same driver assignment. Finally, Constraints (11)
and (12) require all variables in the model to be binary.

4 Computational Experiments

The building blocks of our proposed technical approach for driver scheduling in TL relay
networks were implemented in Python 2.6, and all instances of DSM and DRSCM were
solved using CPLEX 12.1 on a Xeon® 3.2 GHz workstation with 6 GB of RAM.

4.1 Generation of Instances and Selection of Parameter Values

We generated random problem instances to test the computational performance of our
proposed approach presented in Section 3.1 and to analyze the characteristics of the
solutions obtained. We generated five instances of 50 node networks by randomly
locating uniformly distributed nodes in a region of 600 miles x 600 miles. This area
represents the geographical region covered by a regional network for a major TL carrier.
Distances on the arcs were computed using the Euclidean norm as a means to estimate
actual over the road distances. For each of our instances, we randomly selected 10%
(245) of the origin-destination (O-D) node pairs in the network to have truckload flows.
However, since one of our goals is to assess the effect of lane volume on the performance
of the approach and the characteristics of the solutions, we varied the actual demand (i.e.,
number of truckloads shipped) between those selected O-D node pairs. We randomly



generated an integer number uniformly distributed between 10 and 20 for each selected
O-D node pair for our low lane volume experiments, and between 10 and 40 for our high
lane volume experiments.

Prior to solving the DSM and DRSCM problems, we solved the relay network
design problem to obtain a relay network configuration and a routing for each of the
truckloads using the heuristic approach presented in [7]. As a result, the number of hubs
varies slightly from one instance to another depending on the optimal number of RPs that
was opened as a solution to the relay network design problem. Similarly the number of
inter-RP movements (e.g., loads) depends on the routes that are selected for the
truckloads in the network. The instances used in our computational experiments
considered truckload routes with limitations of 25% circuity above the shortest path
distance between origin and destination of a truckload, and 225 miles and 450 miles for
the distances covered by local and lane drivers respectively. Changes to these parameters
would likely result in different relay network design configurations and truckload
routings that in turn would affect the size of our problem. It is also important to note that
the number of duties that are generated not only depends on the limitations that we
described in Section 3.2, but it also depends on the design of the relay network (i.e.,
number and proximity of the RPs). The design of the relay network is affected by the
limitations imposed on truckload route circuity and the distances covered by the drivers.
Changes to these parameters will also have an effect on the number of duties that are
generated by our proposed approach. This is not explored in the present work.

For the generation of feasible duties to cover the loads in each of our experiments,
we considered the following values from hours-of-service regulations [15]: maximum
number of driving hours allowed in a day (@) = 11 hours; minimum number of hours of
rest required (7) = 10 hours; maximum number of hours of rest between two consecutive
workdays (7’) = 14 hours; and number of hours of extended rest required ([1) = 34 hours.
Although the current regulations do not impose a limitation on the number or frequency
of 34-hour restarts, we implemented a portion of the rule that will come into effect in July
2013 by limiting the number of restarts to one in a seven day period (e.g., Constraint (9)
of DRSCM). In addition to hours-of-service regulations, we considered a carrier-
established limitation on the time away from domicile for drivers of 2 and 3 days to
observe the effect of this design parameter on the performance of our modeling approach
and the quality of the solutions obtained.

Also, the cost of feasible duties was computed in our duty generation algorithm
presented in Section 3.3 by considering a rate of $1.3 per mile for loaded and empty
movements, and a compensation of $75 per rest period spent away from domicile.

Finally, we analyzed scenarios with planning horizons of 3 and 7 days considering
the same freight demand spread over the length of the given planning time period. The
purpose was to observe the performance of our approach solving driver scheduling
problems across different demand density periods; something that a TL carrier may
experience throughout the year.



4.2 Results

Tables 1 and 2 show the results for our low lane volume (LLV) experiments when time
away from domicile is limited to 3 days. The results in Table 1 correspond to duty
selection while driving scheduling results are presented in Table 2.

Table 1: Duty Selection Results for Low Lane Volume and TAFD = 3 days.

PH Rep. #of  #Hof #of #of Cost Setup  Solution
Loads RPs  Duties Selected (3) Time Time
Duties (secs) (secs)
1 3,177 16 199,596 1,445 916,891.72 820.26 111.86
2 3,786 19 228,517 1,723 1,063,952.61 1,132.95 140.76
3 3 3,380 19 144,680 1,593 991,707.71 532.72 74.78
4 3,589 18 161,776 1,611 1,274,989.30  683.12 70.28
5 3,565 18 222915 1,687 948,293.72 1,045.13  67.64
Average 3,499.4 18 191,496.8  1,611.8 1,039,167.01 842.84 93.06
1 3,177 16 80,656 1,459 942,824.76 372.85 98.90
2 3,786 19 99,825 1,729 1,076,513.0  538.40 108.90
7 3 3,380 19 63,606 1,602 1,019,958.39  312.39 33.90
4 3,589 18 75,703 1,644 1,296,142.58  418.53 7.70
5 3,565 18 91,684 1,699 974,372.81 493.82 66.97

Average 3,499.4 18  82,294.8 1,626.6  1,061,962.31 427.20 63.27

From the results in Table 1, it is clear that spreading the demand over a longer
planning horizon (PH) results in a significant reduction in the number of feasible duties in
DSM. This is because when loads are spread over a longer planning horizon, it is more
challenging to find loads with compatible time windows that can move together in a
driver duty. As a result of this, average setup times — the time required to generate the
duties using our enumeration algorithm and construct the mathematical model for duty
selection — and average solution times are reduced 49.3% and 32% respectively when the
average since the number of duties decreases due to the longer planning horizon. As
observed in this table, instances with a planning horizon of 3 days were built and solved
in less than 22 minutes, while instances with a planning horizon of 7 days were built and
solved in less than 11 minutes. However, we can observe that although setup time has a
direct relationship to the number of duties in DSM, the solution time varies significantly
from one instance to another.

Although problem sizes vary significantly with planning horizon and affect the
performance of DSM, the solutions obtained present very similar number of optimal
duties selected to cover the loads in the network and no significant difference in the
operational costs. However, in order to determine the effect of demand density (i.e.,
same demand spread over a longer planning horizon) on the cost of scheduling drivers we



need to consider the number of active drivers required to handle the selected duties as
determined by the driver scheduling model. In Table 2, it can be observed that the
average number of drivers needed for high demand density problems (i.e., 3-day planning
horizon problems) is significantly higher both at the domicile level and across the relay
network. Thus, driver scheduling and routing can be expected to be more expensive for
higher demand density.

Table 2: Driver Scheduling Results for Low Lane Volume and TAFD = 3 days.

PH Rep. Avg. # Ave #  Avg #of Total # #of Solution  Avg. Max.
of of Drivers of Optimal Time Opt. Opt.
Vars. Const. per Active  Solutions  (secs) Gap Gap

Domicile  Drivers

7,257 88,196 48.88 782 15o0f 16 28.45 6.25%  6.25%
6,511 68,820 50.05 951 17 of 19 2256 12.13% 15.17%
6,037 70,430 46.00 874 18 of 19 3792  40.62% 40.62%

7,728 65,880 61.17 1,101 16 of 18 28.68  19.13% 19.57%
7,401 116,538 48.56 874 16 of 18 51.44 6.92% 10.98%

98]
DA W=

Average 6,986.8 §81,972.8 50.93 896.4 33.81 17.01%

1 5,176 41,713 30.06 481 11of 16 15826 49.61% 52.55%

2 5,140 47,001 29.37 558 140f19 17597 3727% 71.77%
7 3 3,694 27,258 24.26 461 140f19 196.60 26.20% 54.23%

4 5,196 40,499 35.28 635 100f 18  279.44 22.54% 50.22%

5 7,128 64,588 29.56 532 12 0f 18 54.93  49.39% 56.00%
Average 5,266.8 44,211.8 29.71 533.4 173.04  37.00%

The results presented in Table 2 for the driver scheduling problem were obtained
using the set of optimal duties from DSM as described in Section 3.1. Recall that our
approach requires us to provide a set of drivers /; at each domicile k. We considered total
number of truckloads handled at each relay point to obtain an initial estimate for the
number of drivers, and used a trial-and-error method to modify this estimate in cases of
infeasibility. We also established a time limit for the solution of DRSCM of 15 minutes
for problems with a planning horizon of 3 days, and 30 minutes for problems with a
planning horizon of 7 days. We report both the number of instances that solved to
optimality (# of Optimal Solutions) and the optimality gaps for those instances that
stopped after completing the time limit without an optimal solution.

We observed variability from domicile to domicile in the performance of DRSCM at
each replication. One of the reasons corresponds to the number of duties that start at a
given domicile, with some domiciles having significantly more duties than others. The
values presented for number of variables, constraints, and drivers at each domicile in
Table 2 are averages across individual domicile problems solved at each replication. As
shown in this table, the assignment of duties to drivers cannot be solved to optimality at
one or more of the domiciles in each replication when considering a planning horizon of



3 days; however in the column labeled # of Optimal Solutions, we see that the majority of
domiciles solved to optimality with only one or two unable to solve to optimality. The
column labeled Solution Times presents the average solution times for those problems
that were solved to optimality, and the final two columns report the average and worst
case optimality gaps for the problems that could not be solved to optimality. As the
planning horizon increases to 7 days, we see the tractability issues worsen as each
instance has between 5 and 8 domiciles unable to solve to optimality and large optimality
gaps at termination for those problems. These problems are more difficult to solve since
we are enforcing the 34-hour rule restart established by hours-of-service regulations (i.e.,
Constraint (9) in DRSCM) which was relaxed for the problems with 3-day planning
horizons. In these instances, the number of optimal schedules found is always less than
in the case for the shorter planning horizon problems, and the average and maximum
optimality gaps are always higher. Solution times for the problems with optimal
schedules also increase significantly between the two planning horizons.

Although the difference in the average number of variables is not significant for
different levels of freight density (i.e., different planning horizons), the average number
of constraints varies significantly with a reduction of 33.7% when the planning horizon
increases from 3 to 7 days despite the inclusion of additional constraints to enforce the
34-hour rule as described above. The reason for this decrease is because having the
freight spread over a longer planning horizon results in a significant reduction in the
number of incompatible duties for every other duty in the model and thus fewer
Constraints (8) in the model.

With respect to the solutions found, the average number of drivers per domicile and
the total number of active drivers across the relay network are reduced 41.66% and
40.50% respectively when considering the longer planning horizon. Enforcing the 34-
hour restart rule is one of the reasons why the reduction in the number of required drivers
is not as high as one would expect when more than doubling the length of the planning
horizon to serve the same truckload demand. Another reason is because the solutions
found for some of the domiciles in each replication that are not optimal. Allowing a
longer running time for these instances would likely result in solutions with a lower
number of drivers required.

In the following subsections, we consider the effect of further restricting the length
of the driver duties and having a higher lane volume in the relay network.

4.2.1 Effect of Time Away From Domicile

We now explore the effect of changing the limitation on TAFD. Increasing or decreasing
TAFD will impact which duties are feasible and, consequently, the total number of duties
in DSM. In our computational experiments we wanted to quantify this impact as well as
to assess the effect on operational cost. This last aspect is important to carriers and
researchers who are interested in determining some of the cost efficiency tradeoffs
between operating a relay network and using traditional PtP dispatching.



Table 3 shows the results for duty selection considering a limitation of 2 days away
from domicile for the drivers. The values between parentheses underneath the average
results shown in this table represent the differences with respect to the average values
obtained when TAFD = 3 days (Table 1).

Table 3: Duty Selection Results for Low Lane Volume and TAFD = 2 days.

PH  Rep. #tof #of #of #of Cost Setup Time  Solution

Loads  RPs Duties Selected (%) (secs) Time

Duties (secs)

1 3,177 16 147,605 1,452 927,820.07 565.06 6.95

2 3,786 19 171,482 1,789 1,111,589.45 808.23 27.67

3 3 3,380 19 108,365 1,623 1,021,832.41 400.12 55.01

4 3,589 18 102,516 1,783 1,393,609.18 458.90 10.46

5 3,565 18 165,576 1,692 952,632.17 714.73 24.44

Average 3,499.4 18 139,108.8 1,667.8 1,081,496.66 589.41 24.91
(-27.36%) (+3.47%) (+4.07%) (-30.07%) (-73.24%)

1 3,177 16 59,258 1,479 956,772.21 338.06 6.68

2 3,786 19 74,002 1,782 1,112,714.60 491.55 7.89

7 3 3,380 19 47,719 1,653 1,047,034.50 291.61 4.00

4 3,589 18 46,817 1,766 1,368,884.75 373.44 0.94

5 3,565 18 68,050 1,712 984,297.88 448.30 21.67

Average 3,499.4 18 59,169.2 1,678.4  1,093,940.79 388.59 8.23
(-28.10%) (+3.18%) (+3.01%) (-9.04%) (-86.98%)

As observed in Table 3, a limitation of 2 days for the TAFD results in smaller
instance sizes of DSM due to a reduction in the number of duties that are generated. The
reduction in problem size is similar for both planning horizons relative to the results
obtained when TAFD = 3 days. We also observed that since having duties with up to 2
days away from domicile reduces the number of duties that can cover more than 2 loads;
the solutions to DSM include more duties than before. This essentially implies that we
need a larger number of shorter duties to cover the same demand. As a result, the cost of
routing and rest for the drivers increases as well. However, the increase in number of
duties and cost is not very significant and it never exceeds 5% for both planning horizons.

Due to the reduced number of duties being generated in each replication, there is a
reduction in setup times. This reduction is more evident for those problems with more
duties as it is the case for replications with 3-day planning horizons. For these instances,
the average setup time is 30% less than before when longer duties were also generated.
However, the biggest effect of reducing TAFD to 2 days is observed in the time that it
takes to solve DSM. Problems with a planning horizon of 3 days have a reduction in
average solution time that exceeds 73%, while problems with 7-day planning horizons
are solved on average more than 86% faster than before. Although the reduction in
solution times is very significant, total time required to obtain a solution is still driven by
setup time. For 3-day planning horizon problems, instances were created and solved in



less than 14 minutes in the worst case, while problems with planning horizons of 7 days
were completed in less than 9 minutes in the worst case.

Table 4 shows the results for driver scheduling when considering TAFD = 2 days
and planning horizons of 3 and 7 days.

Table 4: Driver Scheduling Results for Low Lane Volume and TAFD = 2 days.

PH Rep  Avg # Avg. #  Avg #of Total # #of Solution  Avg.  Max.
of of Drivers of Optimal Time Opt. Opt.
Vars. Const. per Active  Solutions  (secs) Gap Gap

Domicile  Drivers

1 7,229 86,275 49.69 795 150of 16 30.33 1.16% 1.16%
2 6,835 75,860 51.37 976 19 of 19 46.06 0.00% 0.00%
3 3 6,225 76,598 4595 873 19 of 19 68.87 0.00% 0.00%
4 8,849 96,933 66.00 1,188 18 of 18 68.17 0.00% 0.00%
5 7,379 109,616 48.72 877 18 of 18 72.42 0.00% 0.00%
Average 7,303.4 89,056.6 52.91 941.8 57.17
(+4.5%)  (+8.7%)  (+3.9%) (+5.1%) (+69.1%)

1 7,351 59,274 31.38 502 10 of 16 176.12 53.4% 55.6%

2 7,638 74,594 32.68 621 14 of 19 15272  56.1% 78.0%

7 3 3,780 28,742 24.84 472 16 of 19 301.80 37.6% 53.1%

4 5,358 45,055 32.78 590 10 of 18 350.92  25.1% 62.8%

5 7,145 63,673 30.50 549 12 of 18 74.33 50.9% 57.1%
Average  6,254.4 54,267.6 30.44 546.8 211.18
(+18.8%) (+22.7%) (+2.4%)  (+2.5%) (+22.0%)

As observed in Table 4, since duty selection solutions have more duties when TAFD
is limited to 2 days, the average problem size for DRSCM increases as well. As a result
of the increase in instance size for DRSCM at each domicile, it takes more time to find
optimal solutions. We observe that these problems are significantly easier to solve over
shorter planning horizons (3 days) as observed by the number domiciles for each instance
that solve to optimality, the time required to obtain the optimal solutions when they can
be obtained, and the optimality gap at termination; the performance is significantly worse
over longer (7 day) planning horizons.

In terms of the solutions obtained, the average number of drivers per domicile and
the total number of active drivers increase as compared to the case with TAFD = 3 days.
The average increase for the longer planning horizon problems is less than 2.5%, while it
is close to 5% for the 3-day planning horizon problems. A one to one domicile
comparison of the number of drivers required when going from 3 to 2 days in TAFD
indicates that in most cases the difference is close to the average and there are only a few
cases, especially problems without optimal solutions, where the difference is significant.
However, this difference never exceeds 23 drivers for problems that are solved to
optimality in both cases.



Although the actual difference between the total costs of activating and scheduling
drivers when going from 3 to 2 days in TAFD cannot be estimated from our results, we
can imply that the effect of different duty lengths seems to mostly depend on the number
of drivers required, especially since operational costs are only marginally affected by
changes to this parameter. Additional testing with longer duties is necessary to better
assess the effect of duty length on the costs associated with operating a relay network and
analyzing the tradeoffs with respect to traditional PtP dispatching.

4.2.2 Effect of Lane Volume

To assess the effect of lane volume on the performance of our proposed approach and the
characteristics of the solutions found, we considered problem instances with a limitation
on TAFD of 2 days and planning horizons of 3 and 7 days. Recall that these high lane
volume (HLV) experiments consider instances in which we increased the number of
truckloads that are shipped between the selected O-D pairs of nodes in the relay networks
that we generated. Table 5 shows the DSM results for our HLV experiments. The values
between parentheses represent the differences with respect to the average values obtained
for the LLV experiments of the same type (Table 3).

Table 5: Duty Selection Results for High Lane Volume and TAFD = 2 days.

PH Rep. #of #of #of #of Cost Setup Time  Solution
Loads  RPs Duties Selected (%) (secs) Time
Duties (secs)
1 5,356 16 491,122 2,438 1,578,260.54  5,167.68 77.58
2 5,866 19 537,925 2,740 1,695,945.78  6,213.84 206.55
3 3 5,545 19 350,981 2,707 1,633,536.45  3,068.92 228.14
4 5,831 18 299,662 2,889 2,199,388.81  2,864.33 21.87

5 5,689 18 469,833 2,694 1,727,891.44  4,974.65 124.44

Average  5,657.4 18  429,904.6  2,693.6 1,727,891.44  4,457.88 131.72
(+61.67%) (+209.1%) (+61.51%)  (+59.77%)  (+656.3%) (+428.8%)

5,356 16 183,203 2,476 1,590,079.88  1,808.59 21.52
5,866 19 201,226 2,797 1,729,014.99  2,133.18 15.05
5,545 19 142,003 2,697 1,654,905.02  1,437.05 6.55
5,831 18 127,994 2,823 2,140,134.57  1,727.93 12.22
5 5,689 18 184,806 2,718 1,543,457.79  1,981.64 36.29
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Average  5,657.4 18 167,846.4 2,702.2 1,731,518.45 1,817.68 18.33
(+61.67%) (+183.7%) (+61.00%)  (+58.28%)  (+367.8%) (+122.7%)

As observed in Table 5, the higher volume on the lanes of our instances represents
an average increase of approximately 62% more loads in the network. As a result, the
number of generated duties increases significantly, especially for problems with 3-day
planning horizons where the average problem size of DSM increases more than 3 times
as compared to the problem sizes of the LLV experiments. As a consequence, setup and



solution of these higher lane volume problems take considerably more time. This
increase in time is very significant for 3-day planning horizon problems which are built
and solved approximately 107 minutes in the worst case; this is almost 8 times longer
than the LLV experiments of the same type. Similarly, while 7-day planning horizon
problems are built and solved in less than 36 minutes, this is still 4 times longer than the
time it took to solve similar LLV problems.

Although it is evident that the performance of DSM is challenged by the size of the
instances with higher lane volume, the most interesting observation in these experiments
relates to the solutions that are obtained. As observed in Table 5, for both planning
horizons, the increase in the number of optimal duties selected (approximately 61%
more) and the increase in operational costs (approximately 60% more) are very close to
the increase in the number of loads in the network (approximately 62%) for the HLV
experiments. This is an indication that even though there are non-linear cost structures
for the driver duties, there is a direct linear relationship between demand volume and
optimal operational costs of routing and rest compensation for the drivers. However, this
cost still does not include the activation of drivers at the domiciles in the relay network.

Based on the optimal duties obtained by DSM, the results of DRSCM for the HLV
experiments are presented in Table 6.

Table 6: Driver Scheduling Results for High Lane Volume and TAFD = 2 days.

PH Rep  Avg # Avg. #  Avg #of Total # #of Solution  Avg.  Max.
of of Drivers of Optimal Time Opt. Opt.
Vars. Const. per Active  Solutions  (secs) Gap Gap

Domicile  Drivers

1 19,843 367,575 81.69 1,307 10 of 16 123.73  16.7% 35.1%

2 17,419 328,073 80.32 1,526 16 of 19 174.56  9.5% 20.6%

3 3 17,215 364,657 74.79 1,421 14 of 19 51.77 21.1% 43.6%

4 23,691 407,987 105.06 1,891 16 of 18 169.47 57% 7.5%

5 18,530 420,020 78.33 1,410 12 of 18 4096 20.5% 40.3%
Average 19,339.6 377,662.4 84.04 1,511.0 112.10
(+164.8%) (+324.1%) (+58.8%) (+60.4%) (+96.1%)

1 13,667 165,631 58.63 938 7 0f 16 323.07 62.3% 70.5%

2 13,621 185,869 56.95 1,082 70f 19 164.39 50.6% 76.4%

7 3 11,053 132,073 49.05 932 70f 19 134.19 53.4% 75.1%

4 15,629 180,518 71.33 1,284 50f18 17.12  56.0% 75.4%

5 14,225 197,244 57.44 1,034 8 of 18 222.00 58.0% 73.9%
Average 13,639.0 172,267.0 58.68 1,054.0 172.15
(+118.1%) (+217.4%) (+92.8%) (+92.8%) (-18.5%)

In Table 6, we can observe that since high lane volume increases the number of
optimal duties found by DSM as discussed above, the size of the DRSCM problems
increases significantly across all replications. For both planning horizons, the average
number of variables for each driver scheduling problem at the domiciles more than



doubles the number observed for the LLV case. Consequently, with the increase in
problem size, it is more difficult to solve some of the domiciles at each replication. The
number of problems that stop before reaching optimality at the pre-specified time limit
increases in both planning horizons. Also, for the higher density experiments (i.e., 3-day
planning horizon problems), the problems that solve to optimality within the time limit
take on average almost twice as much time as the experiments with low lane volume; this
is not observed for the problems with planning horizons of 7 days.

Finally, the actual impact of high lane volume on the average number of required
drivers is still not clearly defined since for a non-trivial number of domiciles at each
replication it is very difficult to obtain the optimal assignment of drivers to duties.
However, there is a clear indication that lane volume has a very significant effect on the
number of drivers needed, and consequently it will also affect considerably the total costs
associated with activating and scheduling drivers in a relay transportation network.

5 Conclusions

In this paper, we presented a new modeling approach for scheduling drivers in a relay
network for TL transportation that can be also applied to other hub-and-spoke based
trucking networks. The proposed approach decomposes this problem in a series of
smaller sub-problems that are solved sequentially. First, an algorithm is used to generate
driver duties that start and terminate at a domicile in the relay network and cover one or
more loads with pre-defined service requirements. Driver duties are created using
templates and their feasibility is checked to ensure adherence to hour-of-service
regulations, a carrier-based limitation on the time allowed away from domicile for the
drivers and the service requirements for the loads. These feasible driver duties are
composite variables that are then used in a mathematical formulation (DSM) that selects
those that will satisfy demand while minimizing the costs of routing trucks and
compensating drivers that spend rest periods away from their domiciles. The assignment
of drivers to selected duties (and consequently the creation of their driving schedules for
a given planning horizon) is made by solving another mathematical problem (DRSCM)
for each individual domicile in the relay network. Decomposing the driver scheduling
problem at the domicile level does not come at the expense of a loss of optimality since
the solution to DSM provides a unique assignment of loads to driver duties.

After completing computational experiments of our proposed approach, we have
determined that the number of variables (i.e., duties) in the model significantly affects the
performance of DSM. Our experimentation shows that problem size is affected by all of
these three factors: different freight densities (i.e., same demand over different planning
horizons), lane volumes (i.e., more truckloads shipped in the same lanes over a given
planning horizon), and limitations on the time away from domicile for the drivers. In
general, bigger problem instances of DSM take significantly more time to generate
feasible duties and to solve. Specifically, freight density and lane volume have a
substantial effect on the performance of DSM, whereas changes in TAFD have a still



sizeable but less significant influence in the time required to generate and select feasible
duties that are cost effective. Interestingly, out of the three factors mentioned above, only
lane volume seems to have a significant effect on the solutions obtained in terms of
number of optimal duties needed to satisfy the demand and the operational costs. In this
case, there seems to be a direct linear relationship between changes in the number of
loads in the network and the subsequent changes in the optimal solutions obtained with
DSM. The differences between the solutions found for different freight densities and
duty lengths allowed are only marginal.

Similarly, the performance of DRSCM is affected by instance size. The greater the
number of duties obtained to the DSM problem, the larger the size of problem instances
of DRSCM we observe. However, some instances of these problems are more difficult to
solve than others of similar size. As a result, there is significant of variability in the
performance of the driver scheduling problem across different domiciles in a single
replication. Again, high lane volume problems are much more difficult to solve than
their low lane volume counterparts. In each of our replications, we observed that some of
the schedules for certain domiciles are not optimal given that the solution of DRSCM was
stopped after a pre-specified time limit has passed. In fact, the average number of
optimal schedules that are obtained in each replication is reduced for longer planning
horizons, longer duties for the drivers and especially higher lane volumes.

Finally, there is evidence that the total costs of activating and scheduling drivers at
the RPs across the relay network depend mostly on lane volume and freight density.
Although we only observed a very modest increase in total costs when changing the
limitation on TAFD from 3 to 2 days, it is still necessary to consider longer duties to fully
understand the effect of this parameter on the expenses that carriers can expect when
operating a relay network. This analysis will also help us to assess the cost efficiency
tradeoffs associated with network-based configurations as compared to current PtP
dispatching for the truckloads. Other areas for future research are identified in the next
section.

6 Future Research

We were able to identify several areas for future work associated with driver scheduling
in TL relay networks and other transportation systems based on hub-and-spoke networks.

First, a column generation approach using a multilabel shortest path algorithm to
generate duties can be implemented to solve DSM given the large number of variables
needed. This approach will allow us to consider duties with longer horizons for TAFD
and help us to avoid tractability issues due to problem size.

Similarly, there is a need to explore alternative formulations for the driver
scheduling problem at each domicile (DRSCM) to improve on the performance of the
model presented in this research. An interesting aspect related to this problem relates to
the estimation of the number of drivers that should be used at each RP to obtain a feasible



solution. Some techniques can be explored to determine initial estimates that will
facilitate obtaining optimal solutions for DRSCM in an efficient way.

Another area of future work relates to the development of an integrated modeling
approach for relay network design and driver scheduling that will make these decisions
simultaneously. An integrated approach has the potential to provide better solutions than
the decomposition approach presented in this paper since it would directly capture the
interactions that exist between these two problems.

Also, the present work can be extended to consider different types of drivers that
exist in TL and LTL operations such as those who bid for certain loads. In the present
work, any driver can move any load as long as he or she returns home within a pre-
specified time limit. Similarly, our approach can be extended to consider union rules in
addition to the hours-of-service regulations when determining the feasibility of driver
duties.

It would also be interesting to understand whether balancing equipment at the relay
points as required by the relay network design problem is an adequate surrogate to
enforcing driver balance. We are interested in determining what are the incremental costs
related to driver scheduling in addition to those incurred to balance the equipment
throughout the network.

Finally, to further support the case for the use of relay networks in practice, it is
necessary to understand and quantify the positive service impact of operating a relay
network for freight movement as opposed to traditional point-to-point dispatching. This
could be a significant step towards the acceptance of this type of systems and highlight
the importance of collaborative logistics efforts like the Physical Internet initiative.
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