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Abstract 
 

The design and planning of major material handling systems belongs 
to the class of systems design problems under uncertainty.  The overall 
structure of the system is decided during the current design stage, while 
the values of the future conditions and the future planning decisions are 
not known with certainty.  Typically the future uncertainty is modeled 
through a number of scenarios and each scenario has an individual time-
discounted total system cost.  The overall performance of the material 
handling system is characterized by the distribution of these scenario 
costs.  The central tendency of the cost distribution is almost always 
computed as the expected value of the distribution.  Several alternatives 
can be used for the dispersion of the distribution such as the standard 
deviation and variance.  In this study the standard deviation of the cost 
distribution is used as the measure of the risk of the system.  The goal is to 
identify all configurations of the material handling system that are Pareto-
optimal with respect to the tradeoff between the expected value and the 
standard deviation of the costs; such Pareto-optimal configurations are 
also called efficient.  The final selection of the material handling system 
for implementation can then be made based on the Pareto graph and other 
considerations such as the risk preferences of the system owner. 

 
 



 

1 Introduction 
 
1.1 System Design under Uncertainty 
Material handling systems are an essential component of any facility that produces, 
consumes, or transforms one or more goods.  Prominent and traditional examples are 
manufacturing plants and distribution systems.  Material handling systems are also 
important components of service facilities such as hospitals, restaurants, and retail malls.  
Material handling systems range from the very ad hoc manual handling systems, such as 
restocking the shelves in a grocery store, to the complex and hardware intensive systems, 
such as fully automated distribution centers for the wholesale of frozen meats.  Especially 
the design and management of large and automated material handling systems exhibits all 
the characteristics of designing engineered systems under uncertainty.  During the design 
phase, the structure of the system and the management policies of the system are 
determined.  However, at the design time the future conditions are not known with 
certainty.  The uncertainty of the future is typically captured in a number of possible 
scenarios.  For a particular scenario, the structure of the system and the values of all the 
uncertain parameters are assumed to be known, so the performance of the system under 
that scenario can be computed.  Material handling systems are typically required to be 
feasible, i.e. to satisfy one or more service requirements, for the parameter values of the 
scenario and have cost minimization as their performance objective.   

The cost can be divided into two categories: one set of cost is associated with the 
structure of the material handling system and the second set is associated with the 
behavior or execution of the material handling system.  All of the cost components 
associated with the material handling system are included in the total system cost.  Many 
material handling systems have a system life time of many years.  In such cases, the time 
when the costs are incurred has to be incorporated explicitly in the evaluation of the 
system performance.  For large material handling system, the performance objective is 
then the minimization of the net present value of the total system cost.  The net present 
value computation discounts future costs to the design time.   

The expected value of the net present values of the scenarios gives the expected 
efficiency or reward of the system.  However, the uncertainty of the future also has to be 
considered.  The standard deviation of the net present values of the scenarios gives the 
risk of the system.  In the next section we will discuss the tradeoff between the system 
risk and reward. 

 
1.2 Multi-objective Performance Evaluation: Risk versus Reward 
Tradeoff 
The performance as measured by the total system cost of a material handling system is a 
stochastic variable at its design time.  In other words, the total system costs associated 
with each scenario for a particular material handling system yield a cost distribution.  
One goal of this research is the computation of the first and second moment of this 
distribution, i.e. the expected value and standard deviation.  The first moment of the cost 



 

distribution is nearly universally used as the measure for the central tendency of the 
distribution.  Systems with a smaller expected value of the costs are preferred.  The 
smaller expected value of the costs is denoted as the “reward” of the system when using 
the cost minimization objective.  The dispersion of the costs is often interpreted as a 
measure of risk associated with the system; see for example the ISO standard on risk 
management [1].  Common measures of dispersion used are the variance and standard 
deviation.  The classic example is the use of the variance in the construction of equity 
portfolios by Markowitz [2].  More complex measures of dispersion such as the Value at 
Risk (VaR) and the Conditional Value at Risk (CVar) are used in the financial industry 
but are rarely used for the evaluation of material handling systems; see Fishburn [3].   

Since there are at least two measures of performance of interest to the system 
designer, a tradeoff between them is generally required, i.e. the risk versus reward 
tradeoff.  A material handling system configuration can now be evaluated by its two 
performance characteristics, the expected value and standard deviation of the total system 
cost for the different scenarios.  Assuming the performance measure is being minimized, 
a material handling system configuration is said to be efficient if no other configuration 
has the same or smaller expected value and the same or smaller standard deviation; see 
e.g. Kung at al. [4] for the definition of efficient discrete alternatives.  An efficient 
configuration is also said to be Pareto-efficient or Pareto-optimal.  Specifically, the 
objective of the design process is to find all Pareto-optimal configurations with respect to 
the expected value and standard deviation of the scenario performance measure.  The 
configurations can be plotted in a risk analysis graph with the expected value on the 
horizontal axis and the standard deviation on the vertical axis.  The set of all the system 
configurations dominated by a Pareto-efficient system configuration corresponds to a 
rectangle in the risk analysis graph.  Figure 1 shows a risk analysis graph with three 
Pareto-optimal configurations and their dominance regions.  The risk tradeoff was based 
on 5 scenarios (N=5) and the configuration with the lowest expected cost dominates 
nearly all other configurations.  In this example, only configurations with the lowest or 
near-lowest standard deviation are not dominated by the configuration with the lowest 
expected cost.  Also note that in this example, the optimal configuration for the mean 
value of all the parameters, i.e. the mean-value problem (MVP), is strongly dominated by 
nearly all other configurations. 

The second goal of this research is develop an efficient algorithm that identifies all 
the Pareto-optimal configurations for a material handling system.  This allows the 
configurations to be plotted in the risk analysis graph followed by the selection of the 
final preferred alternative based on the risk versus reward preferences of the corporation 
that will own the material handling system.   
 
2 Material Handling System Design Models 
 
2.1 Review of Material Handling Research 



 

Motivated by the prevalence of material handling systems and by their significant costs, a 
large number of system design models and systems design approaches for material 
handling systems have been developed.  A comprehensive review of these research 
results is beyond the scope of this paper.  Both digital simulation and optimization have 
been used to find material handling systems with desirable performance characteristics.  
Early design methods based on digital simulation were proposed by Perry [6] and 
Ashayeri et al. [5].  Some of the earliest research in the area of optimization of 
warehousing systems was reported in Gudeshus [7] and Kunder and Gudehus [8].  
Comprehensive reviews of the analysis and design of material handling systems haven 
created by Rouwenhorst et al. [9] and Gu et al.[10]. 

One of the most comprehensive models for the design and evaluation of automated 
storage and retrieval systems (AS/RS) is developed in Lerher and Srami [11].  Because 
the model is non-linear integer in function of the main dimensions of the AS/RS, they use 
a genetic algorithm to find the optimal.   

Despite the large body of research and the variety of models and solution algorithms 
used, several observations can be made with respect to the design methodology.  In the 
vast majority of the research on material handling systems design, the configuration of 
the systems is based on either a simulation or symbolic model.  For the subset of results 
based on symbolic models, nearly all design models are deterministic, i.e. they use a 
single value for each of the parameters.  The simulation models are inherently stochastic 
and heuristic.  Typically they focus on a homogeneous set of system configurations.  
Especially at the conceptual design stage, when the type and configuration of the material 
handling system is determined, models that explicitly incorporate the uncertain future and 
the stochastic nature of the parameters do not appear to exist.  This is even more the case 
for models that more than a single stochastic performance measure.  To our knowledge, a 
design model that that makes the tradeoff between risk and reward does not exist.   

A second observation is that often the recurring operational costs are simply added 
to the one-time construction costs.  The acceptance or ranking criterion often used is the 
payback period.  However, for major material handling systems with productive life 
times of many years, methodology based on the time-discounted value of money such as 
the net present value is required.  In the following, we develop a design methodology that 
explicitly incorporates the uncertainty, is based on the net present value, and finds all the 
Pareto-optimal configurations for the risk versus reward tradeoff.   
 
3 Robust Systems Design Problem 
 
In the following a framework is presented to design an engineered system while 
explicitly incorporating the uncertainty of the future through a set of scenarios and by 
finding all the Pareto-optimal configurations that tradeoff the risk and reward of the 
designed system.  The final selection of the system to be implemented can then be made 
based on the risk preferences of the corporation and other considerations.  Examples of 



 

such considerations are the total investment cost of the system and the time required to 
implement and bring the system to an operational state. 

The framework is decomposed in a general master problem that makes the risk 
versus reward tradeoffs and a domain-specific sub problem that determines the optimal 
configuration of the system and the corresponding cost using scenario-dependent data 
parameters.  This structure makes the application of the design framework general and 
adaptable to different material handling systems or even systems in general.  Applying 
the framework to a different type of system only requires creating the domain-specific 
sub model. 
 
3.1 Warehouse Design Sub Model 
The design and operation of a material handling system and its performance is dependent 
on the type of the material handling system and on a large number of technology 
parameters.  We focus our attention here on the design of a storage and retrieval system 
for unit loads.  A common implementation of this type of system is a single-deep, pallet 
load automated storage and retrieval system or ASRS.  A schematic of a unit-load storage 
and retrieval system (UL-SRS) is given in Figure 2.  We present the model for this 
material handling system in a top down manner.  At level 0 of the model, a verbal 
formulation describes the overall objective, constraints, and decisions.  Other high level 
constraints can be added if relevant to a particular design project. 
 

Formulation 1: Level 0 Design Model for Unit Load Storage and Retrieval System 

Objective: minimize sum of time-discounted total annual system costs 
 

Subject to: warehouse storage capacity 
warehouse throughput capacity 

warehouse maximum footprint size 
warehouse maximal height 
warehouse maximal width 
warehouse maximal depth 
maximal investment budget 

 
Decisions: warehouse external layout (external dimensions and locations of docks) 

warehouse internal layout (# aisles, rack height, rack depth, I/O point locations) 
warehouse operational policies (storage zones, storage policies, handling policies) 

 
Many models have been developed for this type material handling system.  One of 

the most recent and comprehensive is given in Lerher and Srami [11].  The model 
fundamentally decides the number of aisles, the height of each storage rack, and the depth 
of each storage rack.  It includes many detailed calculations created by required 
clearances and required structural elements.  At level 1 of the design model, these 
clearances and structural elements are ignored.  To simplify the notation, the level 1 



 

model shown next corresponds to a single scenario and the scenario subscript s has been 
omitted.  The following notation is used in the level 1 model (again without scenario 
subscript). 

Parameters 
H planning horizon expressed in years, subscripted by t 
df  discount factor for one year (may be modeled as dependent on the year t) 
p index of a particular planning time interval, e.g. peak, weekly, monthly, 

every Monday 
( )tf  function to compute total system cost for a particular year t 

tpI  inventory of unit loads during year t and planning interval p 

tpSPOL  storage policy, i.e. where to place unit loads, during year t and planning 
interval p 

tpHPOL  handling policy, how to put away and retrieve unit loads, during year t and 
planning interval p 

RD rack depth, number of unit load storage locations perpendicular to the travel 
aisle in one rack face (most often 1, but 2 or more are possible) 

SLD depth of a storage location for a single unit load perpendicular to the travel 
aisle including all clearances 

SLW width of a storage location for a single unit load along the travel aisle 
including all clearances 

SLH height of a storage location for a single unit load along the travel aisle 
including all clearances 

TAW width of a single travel aisle 
MAXW maximum warehouse width (dependent on parameters such as the land lot) 
MAXD maximum warehouse depth (dependent on parameters such as the land lot) 
MAXH maximum warehouse height (dependent on parameters such as zoning and 

construction norms) 
tpNO  required number of handling operations in year t during planning interval p 

(throughput requirement) 
tpα  fraction of the number of handling operations that is executed with dual 

command cycles (i.e. a put away followed by a retrieval operation on a 
single trip) 

tpNSC  number of single command cycles executed in year t during planning 
interval p 

tpNDC  number of single command cycles executed in year t during planning 
interval p 

tpT  time duration of planning interval p in year t in compatible units with SCtpt  
and SCtpd , e.g. the length of one shift expressed in minutes (480 minutes) 



 

( )tscf  function to compute the average single command cycle time  

( )tdcf  function to compute the average dual command cycle time  

tpρ  availability of the material handling system during planning interval p in 
year t 

Decision Variables 
tz   total system cost for year t 

NA number of two-sided aisles 
NC number of columns of storage locations in a rack face 
NL number of levels (rows) of storage locations in a rack face 
WW warehouse width 
WD warehouse depth 
WH warehouse height 

SCtpt  average single command cycle time in year t during planning interval p 

DCtpt  average dual command cycle time in year t during planning interval p 
 

 

Formulation 2: Level 1 Design Model for Unit Load Storage and Retrieval System 
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In the above formulation, three functions have not been fully specified.  The function 
to compute the total cost is a summation of the annual fixed costs associated with the 
material handling equipment and the construction of the rack and the annual variable cost 
associated with the equipment usage.  This usage depends on the average cycle times for 
the single and dual command cycles.  These average cycle times in turn depend on the 
dimensions of the rack face, the location of the rack I/O points, the storage policy, the 
handling policy, and the intensity of the use of the material handling system.  To the best 
of our knowledge no closed form formulas exist to compute the average cycle times 
except for the simplest case such as random storage.  For an extensive discussion of cycle 
times in unit load storage systems see Gu et al. [12] and Vasili et al. [13].  A level 1 
approximation of the cycle times is computed according to the norms established by FEM 
[14] as follows.  The total inventory during the planning interval is assumed to be divided 
evenly among the aisles.  The average single command cycle time is computed as the 
round-trip travel time from the aisle I/O point to the point P1 with coordinates 
( )6, 2 3X Y  of the rack face or ( )6, 2 3NC SLW NL SLH⋅ ⋅ ⋅  plus two I/O operations.  
The average dual command cycle time is computed as the round-trip travel time from the 
aisle I/O point to point P1, then to point P2, and then returning to the I/O point plus four 
I/O operations.  The coordinates of point P2 are ( )2 3, 6X Y  of the rack face or 

( )2 3, 6NC SLW NL SLH⋅ ⋅ ⋅ .  These equations are linear in the decision variables.  
Obviously these formulas represent a significant simplification of the travel time model.  
However, travel times are a factor in the computation of the marginal costs, which in turn 
are incorporated into the annual costs, which are discounted over time.  All of these costs 
are averaged over the different scenarios. 

It should be noted that the warehouse design sub problem using the simplified travel 
time models is a mixed-integer non-linear programming formulation with cubic 
constraints.  This problem can be transformed into a mixed-integer programming problem 
with quadratic constraints by complete enumeration either over the number of aisles or 
over the number of levels in a storage rack.  The resulting quadratic constraints have a 
convex region and can be handled by the latest versions of some of the commercial MIP 
solvers.  Alternatively, the problem can be transformed into a mixed-integer 
programming problem with linear constraints by complete enumeration over all 
combinations of the number of aisles and the number of levels in the rack.  Both of those 
numbers are bound from above by practical considerations.  Computationally, the upper 
bound was set to 25.  Either solution method can be executed depending on the 
capabilities and efficiency of the mixed-integer programming solver available.   
 
3.1 Risk Tradeoff Master Model 
The warehouse design sub model assumes that the values of the parameters are known.  
In the master model, the tradeoffs caused by this uncertainty are explicitly considered.  
The warehouse design sub model is always solved for a particular scenario.  For that 
scenario the values of the parameters are assumed to be known.  For notational simplicity 



 

the scenario index was omitted from the warehouse model.  Only the master problem 
deals with uncertainty and multiple scenarios.   

It should be noted that this decomposition approach is not a two stage decision 
model.  There is only a single decision maker and decisions are only made at the design 
time.  This allows the decision maker to control the variability of the performance of the 
warehouse across multiple scenarios.  Conceptually the decision maker computes a plan 
for every possible eventuality (scenario) and stores the plan.  In the future, the warehouse 
observes which scenario has come to pass, retrieves and then executes the plan for that 
scenario.  As a result, no planning decisions are made after the initial design phase. 

Finally, the risk tradeoff master model is not specific to the design of material 
handling systems and in general is formulated as a maximization problem.  Hence, the 
objective of the warehouse sub problem has to be transformed to the maximization of the 
negative of the costs.  This negative of the cost will be denoted by the “profit” for that 
particular scenario and warehouse configuration. 

The mathematical formulation of the single stage warehouse design problem is 
denoted as the Single-Stage Mean-Standard Deviation Robust Design Problem or 
SS-MSD-RDP.  This formulation will be solved by an iterative optimization algorithm 
described in the next section that systematically examines the full range of tradeoff ratios 
between the expected value and the standard deviation of the scenario profits.  This ratio 
is denoted by κ.  For a given value of κ the SS-MSD-RDP (κ) problem shown below is 
solved.  The solution consists of the optimal configuration of the warehouse Y, the 
optimal warehouse plan for each individual scenario, s, and the associated profit sYz for 
that plan.  The profit sYz  is the objective function value of the embedded secondary 
optimization problem, i.e. the warehouse design sub problem, which is not shown in the 
formulation below.  sYz  is bounded from above by MAX

sYz , which is the maximum profit 
that can be achieved under scenario s for a specific configuration of the warehouse 
denoted by Y.  The upper bound of MAX

sYz  on the scenario profit encapsulates all the 
constraints of the tactical planning problem.  In other words, it possible to operate the 
warehouse so that it yields a profit of sYz  for configuration Y and scenario s as long as 
this profit is no larger than MAX

sYz . 
 

Formulation 3: Single-Stage Mean-Standard Deviation Robust Design Problem 
(SS_MSD_RDP) Formulation 
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( ) ( )( )2
s sYStdDev Y p Exp Y z= −

 



 

MAX
sY sYz z≤  
, sYY binary z continuous  

 
An efficient optimizing algorithm has been developed to solve the SS-MSD-RDP 

based on the adaptation of the branch-and-reduce algorithm by Ryoo and Sahinidis [15].  
It systematically investigates the full range of the tradeoff ratio κ from the maximum 
expected profit to the minimum expected variability.  The solution algorithm solves the 
corresponding SS-MV-RDP problem with the variance of the profits in the objective 
function and transforms the solution to the standard deviation domain.   

 
4 Numerical Experiment 
 
Numerical experiments are currently being conducted to estimate the run time of the 
design framework.  The tests are performed on a computer with two Xeon processors, 24 
GB of RAM and running under Windows 7 (64-bit).  The solver used for the unit load 
storage model is CPLEX 12.2.  For the initial experiments, the warehouse sub model 
requires no more than 20 seconds.  The overall design model requires less than 20 
minutes.  At this time no parameter tuning has been performed and the solvers are used 
with their default parameters.  A complete numerical experiment is planned.   

Many questions with respect to the tuning of the algorithm are topics for future 
research.  The warehouse design sub model is currently being solved as mixed integer 
formulation with quadratic constraints inside a complete enumeration loop.  It can be 
further reduced to a mixed-integer linear formulation inside two-level enumeration loop.  
The impact of solving fewer quadratic constraint MIP formulations versus solving more 
linear constraint MIP formulations has to be further investigated. 
 
4 Conclusions 
 
The framework developed above finds all the Pareto-optimal configurations for complex 
engineered systems explicitly considering the tradeoff between the expected value of the 
profit distributions (the reward) and the dispersion of the profit distributions as measured 
by the standard deviation (the risk).  The Pareto-optimal configurations can be plotted in 
a risk analysis graph.  Final selection of the system configuration can then be made by the 
corporation based on its risk preferences.  The total computation times for the creation of 
the risk analysis graph are less than hour.  This is an acceptable running time for a design 
algorithm and is significantly shorter than the data preparation time for scenarios. 

A conceptual graph is shown in Figure 3.  In addition to the expected values of the 
costs, the 3σ boundary curves are also drawn.  In this conceptual case the 3σ interval for 
the minimum cost warehouse configuration does not overlap the 3σ interval for the 
warehouse configuration with minimum variability of the costs.  In other words, with 
near 100 percent certainty implementing the minimum cost warehouse configuration will 



 

yield lower costs than implementing the minimum variability configuration.  So the later 
would not be a reasonable selection.  In real-world design projects, making such 
inferences may not always be possible since the 3σ intervals of various configurations 
may overlap, but some probabilistic confidence statements would still be possible, e.g. 
there is a less than 5% change that configuration A will cost more than configuration B. 

The framework uses a significant simplification of the travel time model in the 
warehouse.  In addition, many of the algorithm tuning decisions have to be investigated 
further.  Both areas provide rich opportunities for further research.  Finally, the risk 
analysis framework can be adapted to different and more complex material handling and 
warehousing systems design problems.  In other to evaluate a different technology or 
operation mode only the corresponding warehouse design sub problem has to be 
constructed and formulated as an optimization problem.  Equipment manufacturers may 
develop the models for the systems they provide and over time a database of such models 
can be created.  The framework then would allow the comparison of the risk and reward 
of very different technologies and implementations. 
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Figure 1:  Risk Graph with Pareto-Optimal Configurations. 
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Figure 2:  Schematic of a Unit Load Storage and Retrieval System. 
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Figure 3:  Risk Analysis Graph with Probability Boundary Curves. 
 


