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Abstract 
One of the major challenges faced by manufacturing companies is to 

remain competitive in dynamic environments, where fluctuations in 
customer demand and production rates require systems capable of 
adapting in a practical and economical way. A U-shaped production cell is 
considered one of the most flexible designs for adapting the workforce 
level to varying conditions. However, re-balancing efforts are time 
consuming and often require a new work allocation and line design. In this 
paper, a two-stage MIP model to determine the best cell design under 
varying workforce levels is proposed. The model seeks to maintain 
proportionality between throughput and the number of workers. 
Computational experiments considering various line configurations (up to 
19 stations) and workloads (up to 79 tasks) are performed. The results 
show the proposed algorithm provides excellent results for all small and 
medium size problems addressed in this study, as well as for certain 
configurations of large problems. This approach can be used to generate 
lookup tables of line designs to help with quick reallocation of worker 
assignments on the shop floor and with minimal disruption.  

 



 
 

1. Introduction 
 
U-shaped production lines, where workers handle one or more machines, are widely used 
in cellular manufacturing and lean production systems. The main advantages derive from 
a flexible line with cross-trained workers capable of adapting to changes in demand and 
production pace. In lean systems, production lines typically strive to meet a pre-
determined, demand-driven cycle time denoted as takt time. This cycle time is achieved 
through a line balancing exercise that involves grouping tasks into stations and assigning 
workers to tend one or more stations. When the demand rate or workforce levels change, 
the line balancing is revisited and modified with new task groupings and worker 
assignments. This process of adapting the production resources to the changing demand 
patterns is known as Shojinka [1]. On the other hand, the implications of not 
appropriately addressing line balancing span across a wide range of issues, from 
production control (e.g. overproduction, idle workers, etc.) to accounting (e.g. variable 
direct labour cost per unit, etc.).  
 

Current re-balancing practices in industry often involve trial-and-error approaches. 
Such iterative approaches, however, can be tedious and time consuming. Additionally, 
most line balancing algorithms for U-shaped lines proposed in literature tend to address 
stable environments and assume little or no variation with respect to workforce levels. 
Some efforts have addressed workforce issues but have typically sought to minimize the 
number of workers for a given workload condition [2]. These algorithms may not be 
practical in a dynamic environment where very frequent, daily sometimes, U-line 
redesigns are needed. The reasons for such frequent redesigns are typically found 
whenever a volatile demand environment is coupled with an unstable workforce – in turn 
a consequence of absenteeism and high levels of temporary workers. This paper was 
motivated by the needs of a tier-one automotive supplier with a similar environment. 
 

The objective of this paper is to develop a model for designing and balancing U-
shaped production lines that maximizes the linearity of worker throughput. Such model 
aims to produce the design that is most conducive to line balancing while facing a 
varying number of available line workers. 
 
 
2. Literature Review 
 
Extensive research has been done on line balancing for traditional production lines over 
the past four decades. However, research efforts on U-shaped lines started with the 
widespread adoption of JIT and lean manufacturing concepts and philosophy in the early 
1990s. Previous research mainly considers two types of line balancing problems: (i) 
minimization of the required number of stations for a fixed cycle time or, (ii) 
minimization of the maximum cycle time for a fixed number of stations.  



 
 

 
Miltenberg and Wijngaard [3] introduced the U-line assembly line balancing problem 

(ULB) where assignments can be done on both sides of the line. In this work, a dynamic 
programming model was developed for small size (up to 11 tasks) problems to minimize 
the required number of stations for a given cycle time. For medium size problems, a 
“maximum ranked positional weight” heuristic procedure was proposed. This work, 
however, did not consider walking times or crossover issues on walk-paths. 

 
Several efforts have since addressed the ULB with different approaches and various 

degrees of success. Urban [4] used an integer programming model with a branch and 
bound preliminary search to solve problems with more than 21 tasks. Ajenblit and 
Wainwright [5] used a genetic algorithm approach with six different task assignment 
methods on larger problems (up to 111 tasks). Scholl and Klein [6] developed a branch 
and bound procedure for simple assembly line balancing. In this work, models with up to 
297 tasks were solved with optimal or best solutions. Erel et al. [7] proposed solving the 
ULB problem with a simulated annealing algorithm. Martinez and Duff [8] proposed a 
genetic algorithm approach to improve results obtained from 10 different heuristics. 
Gokcen and Agpak [9] proposed a goal programming approach for simple U-line 
balancing problems. In this work, up to 30 tasks with conflicting goals, including 
minimization of the number of work-stations, cycle time and the number of tasks, were 
considered.  

 
There is archival literature on production lines that have considered walking times, 

waiting times and walk-paths. Nakade and Ohno [10] developed a procedure to calculate 
cycle times under optimal worker allocation scenario while considering walking and 
waiting times. Nakade and Ohno [11] proposed a model for deterministic walking and 
process time scenarios. In this paper, the minimum number of workers under a given 
cycle time is first determined. Then, an optimal worker allocation with a minimum 
number of operators is obtained. Stockton et al. [12] modelled flexible walk cycles that 
included walking times using genetic algorithms. The objectives were to minimize the 
number of operators and to reduce the smallest operator cycle time. Shewchuk [2] 
addressed the worker allocation problem for U-shaped lines with objectives of 
minimizing the number of workers while maximizing full work. The proposed model 
incorporates circular walking paths where crossovers are not permitted. 

 
The majority of the existing research on line balancing has been developed for stable 

production environments where the rebalancing frequency is very low. Dynamic 
environments, due to demand volatility and workforce instability, require engaging on 
more frequent line balancing of U-lines, thus the chosen approach should be easy and 
economical. This work addresses this gap. 
 



 
 

3. Production System Description  
 
Figure 1 illustrates a simple u-shaped production line. Multiple stations are closely 
located in a u-shape to form a production cell. Tasks are allocated to stations according to 
precedence relationships. Typically, once tasks are allocated to stations, then assignments 
of workers are established. Multiple stations can be assigned to the same worker as long 
as crossover and cycle time constraints are satisfied. The term “walk-path” is used to 
define the area of responsibility of each worker. Figure 1 represents a U-shaped system 
with 7 stations and 4 workers (A, B, C and D). With M representing the number of 
stations and N representing the number of workers, the system in Figure 1 can be 
described as (M=7, N=4). In this Figure, worker A is responsible for stations 1 and 7, 
worker B is responsible for stations 2 and 3, worker C is responsible for stations 4 and 5, 
while worker D only tends to station 6.  
 

 
 

Figure 1: U-shaped production line (M=7, N=4) 
 
In a U-shape cell, parts flow sequentially through the stations in the system. After 

processing at station 1 is completed, worker A delivers the part to worker B for 
processing at station 2. After that is completed, and since worker B is responsible for 
station 3 as well, he then walks the assembly down to station 3 to perform further 
processing. After delivering the part to worker C at station 4, worker B then returns to 
station 2. A crossover occurs when a worker, by design, systematically intrudes into the 
work zone (as defined by the walk-path) of another worker. This would occur if, for 
example, in Figure 1, worker A were in charge of stations 1 and 3, while worker B was in 



 
 

charge of stations 2 and 6. Crossovers are undesirable for several reasons, including 
safety and productivity considerations.  
 
 
4. Mathematical model 
 
As mentioned before, the objective of this model is to determine the cell configuration 
that, for a variable number of workers, allows for maximum linearity of worker 
throughput. This is accomplished with a two-stage MIP model. The first stage seeks to 
allocate the tasks with the objective of balancing the workload across the stations.  In the 
second stage, workers are assigned to stations with the goal of balancing walk-path times 
(i.e. task time + walking time). The second stage is run for different levels of workforce, 
from 2 workers to M-1 (a practical maximum) and iterated until the proposed linearity 
metric is acceptable. During this iterative process, the objective value is relaxed (stage 1) 
and the operators are reassigned (stage 2), until the target linearity is achieved. Although 
not part of the MIP model, a third stage is used to calculate the linearity of the results. 
Figure 2 shows the logic of the model.  
 

 
 

Figure 2: Flowchart of the two-stage model 



 
 

 
In this model, the following assumptions are made:   

1) Task processing times and worker walking time between stations are considered 
deterministic. 

2) Workers are cross-trained on all tasks. 
3) The production protocol is that of one-piece flow for a single model. 
4) Operators are not allowed to chase each other or to share stations. 
5) Machine breakdowns are not considered. 
6) There is no machine waiting time. 
7) There is an infinite supply of parts in front of the first station. 

 
Also, it is assumed that the stations are located in a grid arrangement and that it takes 

t units of time to travel to adjacent stations (in the same row) or directly across. This 
assumes equal and constant travel speed with no significant acceleration/deceleration. It 
was also assumed that it would take twice that amount of time (2t) to reach a station 
located diagonally across. This assumed a worst case scenario (since tt 22 > ). These 
travel assumptions are mapped to other stations located farther away. Figure 3 depicts the 
travel times for a u-cell configurations with even number of stations.   
 
 

 
 
 

Figure 3: Travel times to stations (even number of stations, M=10) 
 

 
4.1 Stage-1 mathematical model  
 
The model in this stage seeks to distribute the tasks to stations without initially 
considering worker assignments. The required inputs for this stage are: (i) number of 



 
 

stations, (ii) number of tasks, (iii) precedence relationships, and (iv) task processing 
times. 

Stage-1 nomenclature  
 

T = Total number of tasks  
 
M = Total number of stations 
 
i = Index for tasks ( i = 1, 2, ……, T) 
 
j = Index for stations (j = 1, 2, 3……, M) 
 
Di = Standard time to process the task i (deterministic) 
 
P (i, h) =  A set of precedence of tasks, P={(i, h) / task i must be completed before  
task h} 
 
Stimej = Sum of all the task processing times assigned to station j  
 
Maxf = Maximum of the time difference between station times. (Stimej ) 

 

Stage-1 decision variables 
 
To establish the allocation of the tasks to the stations, define 
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otherwise  0,  
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Stage-1 objective function: 
 
The objective function in this stage seeks to balance the workload among stations by 
minimizing the maximum difference between station times (Stimej ) pairs. 
 

Minimize Z1 = Maxf  
 

Stage-1 constraints: 
 
[C1] Each task can be assigned to only one station.  
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[C2] All stations must have an assignment. Dummy stations are not allowed. 
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[C3] This constraint ensures that precedence relations are maintained. P = {(h,i) / task h 
must be completed before task i} .  If task h is assigned to station j, task i can only be 
assigned to station k, },...2,1,/{ MjjjkkMMk ++==∈ .   
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[C4] The following constraints are used to compare the times (Stimej) between stations. 
The variable Maxf gets assigned to the largest value of the gaps. The two left terms in the 
constraints each give the total processing time at station j and g. Maxf is consequently 
minimized through the objective function.   
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4.2 Stage-2 Mathematical Model  
 
This stage is used to create walk-paths by allocating workers to the stations and with the 
aim of balancing walk-path times. A walk-path time is the sum of the task processing 
plus walking times assigned to the same worker. The model for this phase considers two 
major constraints when developing the walk-paths: (i) path crossover and, (ii) balanced 
workloads. Workers cannot be assigned to the stations that require crossing the walk-path 
of another worker. In order to generate a measure of throughput linearity, Stage-2 is 
repeated for different numbers of workers e: }1,...3,2,1/{,, −==∈∀ MeeNNee . 

Stage-2 nomenclature  
 

N = Total number of workers  
 
M = Total number of stations 
 
e = Index for workers (i = 1, 2, ……, N) 
 
j = Index for stations (j = 1, 2, 3..…, M) 
 
Stime j = Total processing time at station j  
 
Lij = Walking time between station i and j.  
 

maxLS  = An input used to prevent crossovers.  
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maxHS  = An input used to prevent crossovers.  
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Stage-2 decision variables: 
1) This variable is used to represent station assignments to workers. 
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2) This variable is used to determine the walk-path for each worker.  
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3) Variable jheIM  is referred as immediate station. It is used to determine the sequence 
of stations through which worker e moves in his walk-path.    
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4) Variable jeFS  denotes the first station visited in the walk-path.  

⎩
⎨
⎧

=
otherwise  0,  

 worker of walkpath in thestation     theis  station  if   1,  efirstj
FS je  

5) Variable LShe  denotes the last station visited in the walk-path.  

⎩
⎨
⎧

=
otherwise  0,  

 worker of walkpath in thestation ast    theis  station  if   1,  elh
LShe  

6) Variable jheB  is created to determine the end of the cycle. If 1=jheB , then j is the last  
station and h is the first station in the sequence.   
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7) Wtimee = Sum of all the task processing times and walking times between stations 
assigned to worker e, also referred as walk-path time of worker e.  
  
8) maxT =  Maximum of walk-path times  
    

Stage-2 objective function: 
The objective function of the second stage seeks to balance walk-path times by 
minimizing the maximum walk-path time. 



 
 

 
Minimize Z2 = maxT 

Stage-2 constraints: 
[C6] Each station can only be assigned to one worker.   
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[C7] One worker can be assigned to many stations if the number of workers is less than 
the number of stations. The following constraints determine the stations in the walk-path 
of each worker.  
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[C8] The following constraints prevent crossovers. Neither diagonal nor horizontal 
crossovers are allowed in this model. Constraint (C8-a) prevents diagonal crossovers 
(across the main aisle in the cell) while constraints C8 (b, c) prevent horizontal 
crossovers (along the row of stations on the same side of the cell).  
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[C9] The following constraints are used to determine the sequence of stations in each 
walk-path. Constraints C9 (a, b, c) determine the next immediate station in the sequence 
for worker e (if multiple stations are assigned to him). Constraints C9 (d, e, f) are used to 
decide the last station in the sequence to complete one cycle. Constraints C9 (g, h, i) are 
created to determine the first station in the sequence. Return time from last station to first 
station is calculated through constraints C9 (j, k, l). 
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[C10] This constraint is developed to balance walk-path times by driving worker time to 
a minimum. The terms at the left side of the constraint represent the task processing 
times, the walking times from station to station, and the return time after completion of 
one cycle. The sum of all three gives the overall walk-path time for each worker.  
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Stage-2 output: 
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5. Computational experiments 
 
The data used to test this model was obtained from two distinct sources. The first-tier 
automotive supplier, which motivated this work, provided one set of data. The other sets 
were obtained from archival literature available in the “Homepage for Assembly Line 
Optimization Research” [13], which hosts a collection of data sets used in simple-line and 
U-line balancing problems. In this paper, a total of 8 different data sets were used. Each 
data set consisted of a collection of task processing times and precedence diagrams. Table 
1 presents a classification of the data sets. All eight data sets were tested with small and 
medium size configurations (M≤16), while four data sets were used to test large 
configurations (M>16). For practical reasons, the extreme points in the number of 
workers (i.e. N=1 and N=M) were excluded from the analysis. Total of 108 different 
configurations were tested for all levels of workforce between [2, M-1], for a total of 
1008 experiments. All experiments were conducted on a 3.20GHz processor with 1 GB 
of RAM. The proposed model was solved with OPL Studio using a CPLEX program. A 
branch and cut model was used in searching for an optimal solution. 



 
 

 
Table 1: Summary of data sets (number of tasks in parenthesis) 

 
Small / Medium Size 

(5-16 stations) 
 Large Size 

(17-19 stations) 
  Mitchell (21)    Sawyer (30) 
  Roszieg (25)    Warnecke (58) 
  Sawyer (30)    Tonge (70) 
  Kilbrid (45)    Automotive Supplier (79) 
  Warnecke (58)   
  Tonge (70)   
  Wee-Mag (75)   
  Automotive Supplier (79)   

 
 
5.1. Linearity measurement 
 
With the output from the model, a scatter plot between throughput and the number of 
workers is developed. A linear regression with a best fit line that intercepts at the origin is 
obtained and its corresponding coefficient of determination R2 then calculated. In this 
work, R2 is used to measure the linearity of throughput per worker. 
 
 
6. Results and discussion  
 
Table 2 presents the computational results. A cursory examination of the summary data 
suggests that the proposed procedure performs well within the boundaries of the 
experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table 2: Computational results (R2) 
 
Number of 

stations (M) 

Number of 

data sets 

Number of 

tasks (T) 

Number of 

workers (N) 

Problem 

size 

Computational results (R2) 

Average Range

5 8 21-79 2-4 S/M 0.95 0.91-0.98 

6 8 21-79 2-5 S/M 0.99 0.96-0.99 

7 8 21-79 2-6 S/M 0.95 0.92-0.96 

8 8 21-79 2-7 S/M 0.97 0.95-0.97 

9 8 21-79 2-8 S/M 0.89 0.85-0.95 

10 8 21-79 2-9 S/M 0.95 0.92-0.97 

11 8 21-79 2-10 S/M 0.97 0.96-0.98 

12 8 21-79 2-11 S/M 0.95 0.94-0.97 

13 8 21-79 2-12 S/M 0.95 0.92-0.98 

14 8 21-79 2-13 S/M 0.93 0.90-0.96 

15 8 21-79 2-14 S/M 0.95 0.92-0.97 

16 8 21-79 2-15 S/M 0.92 0.83-0.97 

17 4 30-79 2-16 L 0.89 0.82-0.93 

18 4 30-79 2-17 L 0.86 0.71-0.95 

19 4 30-79 2-18 L 0.80 0.67-0.98 

 
 
All the scenarios in the small/medium size range were solved with high average 

linearity (R2 є [0.89-0.99]) while the large size scenarios presented a satisfactory 
coefficient of determination (R2 є [0.80-0.89]). However, it can be observed that overall 
performance of the algorithm degrades with the size of the problem (i.e. T and M). Based 
on these results, it appears the algorithm works very well for all small and medium size 
problems and for some configurations of large problems. 

 
 

Table 3 shows the workload assignments obtained from the model and with the 
provided data sets. The percentages shown in the table depict of the amount of work to be 
allocated to each station such that, after accounting for walking times, the linearity (R2) 
falls in the ranges shown in Table 2. This allocation can be used as a general guideline for 
a permanent work distribution among stations when the linearity of the throughput per 
worker is paramount.  
 
 

 



 
 

Table 3: Best solutions for work allocation (percentages by station) 
 

Number of Stations 
5  6  7  8  9  10  11  12  13  14  15  16  17  18  19 
23  15  20  17  16  9  12  9  9  9  7  9  9  6  6 
11  23  10  11  7  11  12  3  11  7  6  7  7  6  7 
24  22  8  17  7  13  7  11  3  7  4  4  4  4  4 
12  23  9  17  6  9  11  7  5  7  6  10  7  6  7 
30  4  17  7  8  7  6  8  7  6  6  9  6  5  3 
   13  17  11  12  7  13  5  6  5  8  5  6  6  6 
      19  11  8  8  5  9  3  9  8  4  5  6  6 
         9  18  11  13  8  9  8  8  5  4  5  3 
            18  13  11  10  8  7  6  5  7  6  5 
               12  5  11  11  6  6  5  8  6  4 
                  5  10  6  8  5  4  4  7  10 
                     9  10  10  7  10  5  7  4 
                        12  6  5  6  4  6  5 
                           5  9  8  4  5  5 
                              9  4  5  8  4 
                                 5  10  2  6 
                                    5  8  6 
                                       1  5 
                                          4 

 
 

Finally, once all tasks are allocated, the various worker assignments can be depicted 
for all scenarios of workforce levels between 2 and M-1.  
 
 
7. Conclusions 
 
A 2-stage MIP model is developed for U-shaped production lines for environments with 
unstable workforce. The model seeks to optimize the linearity of throughput per worker 
while maintaining the line balancing within acceptable limits. The algorithm is able to 
solve problems up to 79 tasks and 19 stations. The method tabulates the best work 
allocation by station that is conducive to both high throughput-worker linearity and line 
balancing. Tables of line design for varying number of stations and workforce levels can 
be derived. These look-up tables can be very useful on the shop floor, where a quick 
redesign response may be needed to adapt to daily changes in workforce levels. 
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