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Abstract 
 

In this paper, we address a one-to-many distribution network 
inventory routing problem over an infinite planning horizon. Each retailer 
has an independent, random demand, and the distribution center uses 
capacitated vehicles for routing delivery. The demand at each retailer is 
relatively small compared to the vehicle capacity. A novel mathematical 
model is given to simultaneously decide the optimal routing tours to 
retailers and routing frequencies of each route. Several heuristics are 
developed to solve large scale instances of the problem. 

 
1 Introduction 
 
The need for the integration and coordination of various components in a supply chain 
has been recognized as an important factor in many companies to remain competitive. 
Inventory management and transportation are two of the key logistical drivers of Supply 
Chain Management (SCM). The coordination of these two drivers is known as the 
Inventory Routing Problem (IRP). IRP can be interpreted as an enrichment of Vehicle 
Routing Problem (VRP) to include inventory concerns.   

Numerous research studies have addressed in IRP and many heuristics have been 
developed to solve practical problems. However, due to the limitation of space, we will 
only mention the most relevant or representative papers here. Interested readers can find 
more details in the following three review papers.  

Ekasioglu et al. [10] presented a methodology for classifying the literature of VRP. 
Eight concluding remarks are addressed at the end of the paper, especially about the 
research opportunities and trends in VRP. Andersson et al. [2] described industrial 
aspects of IRP in maritime and road-based transportation. A classification and 
comprehensive literature review of current state of the research, and trends within both 
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industry and research were presented. As noted by both papers, VRP/IRP is important, 
however, no clear definition exists and there is a gap between research and academia. 
Baita et al. [4] reviewed the available literature on a class of problems denoted as 
Dynamic Routing And Inventory (DRAI) problems. Three characteristics are 
simultaneously considered by this class of papers: Dynamicity, Routing and Inventory. 

Bard et al. [7] presented a comprehensive decomposition scheme for IRP. 
Viswanathan and Mathur [21] considered a multiple-product IRP model and derived a 
stationary nested joint replenishment policy heuristic. Moin et al. [18] addressed IRP in a 
many-to-one multi-product multi-period distribution network and used a hybrid genetic 
algorithm to solve it. Zachariadis et al. [23] proposed an integrated local search method 
for IRP by insertion and removal of replenishment point, and then used Tabu search for 
further improvement. Yu et al. [22] solved an IRP based on an approximate model of the 
problem and Lagrangian relaxation. However, all those papers mentioned in this 
paragraph assume either constant demand rate or known deterministic demand over a 
finite time period at each retailer. 

A policy consisting of a partition of the retailers into disjoint and collectively 
exhaustive sets where each set is served on a separate route is called Fixed Partition 
Policy (FPP). Two important reasons make FPP of interest: simple structure and cost-
effectiveness. Chan et al. [8] analyzed the asymptotic effectiveness of FPP and those 
employing zero inventory ordering. They provided worst case as well as probabilistic 
bounds under a variety of probabilistic assumptions. Anily and Bramel [3] had a 
probabilistic analysis of the similar IRP and demonstrated an asymptotically 98.5% 
effective lower bound. Zhao et al. [24] provided a partition approach to IRP and derived a 
lower bound of the long-run average cost of any feasible strategy. Zhao et al. [25] used 
joint FPP and Power-Of-Two (POT) to solve an IRP in a three-echelon logistics system. 
They also developed a Variable Neighborhood Search (VNS) algorithm to find the 
retailer’s optimal partition. Li et al. [15] compared the performance of direct shipping 
strategy and Fixed Partition Policy (FPP), their analysis is helpful to decide which 
shipping strategy to use based on system parameters. 

Greedy Randomized Adaptive Search Procedure (GRASP) is a recently exploited 
method combining the power of greedy heuristics, randomization, and local search. It is a 
multi-start two-phase meta-heuristic for combinatorial optimization proposed by Feo and 
Resende [11], basically consisting of a construction phase and a local search 
improvement phase. A path-relinking phase can be added/embedded to improve the basic 
GRASP. Villegas et al. [20] considered a VRP using GRASP, they also use path-
relinking as a post-optimization procedure. 

Besides the traditional IRP, some researchers add more considerations in their 
models. For example: IRP with backlogging [1], IRP with production consideration [6], 
inclusion of the pricing decisions in IRP [17], and allowing lateral transfers of vehicles 
and inventory [19]. 

From our literature review, what is missing in IRP research includes considering 
uncertain demands at retailers, variable routing frequency, and consideration of non-
linear characteristics of routing cost and lead time. Most previous research focuses on a 
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single or finite time period with deterministic demand, number of routes and routing 
frequencies are generally fixed as parameters in the decision model. 

The major contribution of our research is to propose a novel model to consider a 
routing problem with random demand at retailers. In the routing stage, we consider truck 
capacity and distance limitation, and inventory costs. This model will simultaneously 
decide the optimal routing tours to retailers and routing frequencies of each route. IRP is 
NP-hard in the strong sense [4], exact methods usually deal with the capacitated problem 
with no distance constraints and no empty routes allowed. In this paper, we derive four 
efficient hybrid heuristics for solving large scale IRP and compare the performances 
between these heuristics. In using a genetic algorithm, we propose some modified 
chromosome representations to overcome limitations we incurred with alternate 
specifications.  
  
2 Problem description and mathematical formulation 
 
We consider a single-product distribution network. The network consists of one 
distribution center (DC) and multiple retailers (R). Each retailer has an independent 
demand for the product. Multiple-product network could be considered provided a 
common demand measure exists and common deliveries are used, safety stock 
expressions are updated accordingly. 

The goal of our decision problem is to decide routing tours to each retailer and 
routing frequencies of each tour so that the total routing and inventory cost is minimized 
over an infinite planning horizon. The DC owns multiple homogenous capacitated 
vehicles, each routing tour should start and end at the DC. While demand is random we 
seek to form standard tours and frequencies. Individual orders will vary based on recent 
usage and vehicle capacity will be considered to ensure a high probability of being able 
to meet demand on each route trip. We assume routing frequencies fall in a discrete set 
such as daily, every other day, weekly and biweekly. 

In our problem, the total cost is a summation of routing cost over each trip and 
inventory cost at each retailer. Routing cost of one trip contains a predetermined fixed 
cost and a variable cost depending on total distance of this trip. Inventory at each retailer 
contains both cycle inventory and safety stock. Lead time is assumed to be a function of 
routing frequency and distance. Detail formulation will be provided later in this section. 
 
2.1 Notation and Decision Variables 
 
Indices 

 R : set of retailers, 0 { }R R DC= ∪  
V :  set of tours 
N :  set of available routing frequencies  

Parameters 
C : default vehicle’s capacity 
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D : distance limit for each route 
p : speed of the default vehicle 
a : fixed cost of using one vehicle at DC 
 c : unit cost per mile 
M : a big positive number 
zα : left α -percentile of standard normal random variable Z. 
dij : distance between node i and node j, subscript “0” represents the DC and other 

positive integers represent retailers 
fn :  routing frequency at level n 
hr :   holding cost yearly per unit at retailer r  
μr :  mean of yearly total demand at retailer r 
σ2

r:  variance of yearly total demand at retailer r 
Variables 

xijv : 1 if i immediately precedes j in route v, 0 otherwise 
yrv : 1 if use route v to supply demand at retailer r, 0 otherwise 
zvn : 1 if route v has routing frequency at level n, 0 other wise  

 
2.2 Problem formulation 
 
Minimize  
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The objective function has two components: routing cost and inventory cost. 
Inventory cost includes both cycle inventory to meet foreseeable demand and safety stock 
to overcome uncertain demand. Constraint 2 is network conservation, for each arc 
entering one node, it should also leave this node. Constraint 3 eliminates subtours. 
Constraints 4-6 guarantee each retailer is assigned to one and only one route. Constraints 
7 and 8 are vehicle capacity and route distance limits. Constraints 9 are discrete/binary 
variable constraints. 
 
To simplify the above formulations, let: 
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: lead time for the retailer r. Lead time is a function of 

routing route frequency (first component) and route distance (second component).

 

 
Then the objective function is to minimize: 
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3 Problem Characteristics 
 
3.1 Optimal Delivery Frequency 

 
If one routing tour is decided, then retailers in this route and the routing cost per trip in 
this route are known. To decide the optimal routing frequency is to Minimize: 
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subject to the vehicle capacity constraints, where Sv is the set of retailers serviced by this 
route v. As a discrete variable having relatively few available values, we can simply try 
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each value and use the one minimizing the total cost. The nonlinearity of the objective 
makes it difficult to obtain a closed form optimality expression, but the first and second 
order derivatives are provided in the Appendix for nonlinear search techniques. 

 
3.2 Upper/Lower Bounds for the Number of Tours 
 
In this research, we do not know the optimal number of tours needed. If using full-truck-
load to delivery products as often as we can (at the maximum allowed frequency, maxγ ), a 
lower bound is generated:  
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And if using one individual route for each retailer, then an upper bound is generated: 

V UB = N. This upper bound is used later on in genetic algorithm to create chromosomes. 
 

3.3 Upper/Lower Bounds for the Objective Values 
 

The major benefit of routing comes from reduction in delivery cost. If there are no 
distance/capacity limitations, nearest neighbors will be merged into one tour. In an ideal 
case, delivery distance to one retailer is 1 + 1/ (N+1) times the distance between nearest 
neighbors, where N is the total number of retailers. Smallest total number of trips 
required is total demand over all retailers dividing by a truck capacity. Let IRC be total 
inventory routing cost, so a lower bound for the objective value is generated as: 
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where dr is distance to its nearest neighbor for each retailer.  The value of second part can 
be found using methods introduced in previous section. 

 The above lower bound is very tight, so an estimation of total cost is also generated 
by considering delivery distance to each retailer as D / n, where D is the distance limit 
and n is the average number of retailers in one route. This estimation formula is not a 
lower bound, and is only used to estimate the possible optimal total routing cost. 
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Any feasible solution is an upper bound, a simple solution is using all direct-shipping. 
In this case, each retailer has one individual route, and the frequency is selected to 
minimize this individual tour. 

 
4 Heuristics 
 
This proposed IRP belongs to the class of NP-hard problems. In this section, several 
heuristics are developed to solve this IRP problem for medium and large instances. The 
basic idea is to generate fixed partitions of retailers and use one vehicle to serve one 
group of retailers. After a routing tour is determined within a group of retailers, routing 
frequencies are selected from available frequency set. 
 
4.1 Modified Sweep Method (MS) 
 
Evidence indicates that the sweep method for routing vehicles is computationally 
efficient and produces an average gap from optimality of about 10 percent [5]. This gap 
may be acceptable where results must be obtained in short order and good solutions are 
needed as opposed to optimal ones.  

We modify the simple sweep method by considering specific characteristics in this 
problem: optimize routing tour after inserting one new retailer, optimize routing 
frequency within one route, start from each retailer and sweep both clockwise and anti-
clockwise. The procedures of our modified sweep method are as follows:  

 
Procedures: 
1. Locate the DC and all retailers on a map or grid. 
2. Extend a straight line from the DC in any direction. Rotate the line clockwise until it 

intersects one retailer. For the first retailer the line intersects, build one individual 
route for this retailer (retailer 1 in Figure 1). 

 

 
Figure 1: Example sweep result 

5

4

DC

1

2
3

6

7
8

9

10

11

12



8 

3. Continue to rotate the line until next retailer is reached, insert new retailer in current 
route using nearest insertion method and try to improve the new route by 2-opt 
method. After including new retailer and deciding new optimal route in current route, 
check all constrains and recalculate the optimal routing frequency and total cost. 

4. If adding the new retailer to current route can reduce total cost and all constraints are 
met, add this retailer current route; otherwise, create a new route for the new retailer. 

5. Continue until all retailers are assigned. 
 

In step 4, after checking all constraints if adding the next retailer, two cases are 
compared to finally decide whether to add this new retailer or not: one is to add this new 
retailer resulting in one longer route, the other is the previous route and a new individual 
route for this new retailer. Let: 

 
RC : routing cost per trip 
IC : inventory cost 
IRC : total inventory routing cost 
γ : optimal routing frequency 
v : previous route 
i : a new retailer 
v+i : a longer route after adding retailer i 
Case1: v i v i v i v iIRC RC ICγ+ + + += +  

Case2: v i v v i i v iIRC IRC RC RC IC ICγ γ+ = + + +  

 
Whether to add retailer i to the previous route depends on the value of these two cases, 
the one with smaller value is the solution. 

The procedure stated above starts rotation at a random retailer location, one issue may 
arise: suppose we rotate the line clockwise in the above figure, then the left retailer 
(retailer 12) will be in a different route from retailer 1 almost for sure, but it may be 
better to group these two retailers. In order to solve this issue, we will do the sweep 
algorithm 2N times, where N is the number of retailers. Use one different retailer as a 
starting rotation points, sweep both clockwise and counterclockwise for each starting 
point, and then choose the best solution among these 2N solutions as our final solution.  

 
Pseudo code: 

For each retailer i: select it as the starting point, extend a straight line from the DC to 
retailer i, do: 

Rotate this line clockwise (and counterclockwise) until it inserts one retailer j, do: 
If adding retailer j to current route violate truck capacity constraint: 

Start a new route; 
Else 

Insert retailer j to current route, and use 2-opt to improve routing tour; 
If the improved tour distance violate the routing distance constraint: 
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Start a new route 
Else 

If using separate routes, the total cost is less: 
Start a new route; 

Else 
Insert retailer j to current route; 

End If 
End If 

End If 
Record the total cost if using retailer i as starting point. 

  Compare and select the smallest cost and use it as the final solution. 
 

4.2 Tabu Search – Simulated Annealing Method (TS-SA) 
 
Tabu search (TS) [12] and Simulated Annealing (SA) [9] are two successful meta-
heuristic solution approaches to solve hard combinatorial problems. The most important 
feature of Tabu search is its ability to avoid search cycling by systematically preventing 
moves that generate the solutions previously visited in the solution space. Simulated 
annealing allows the search to proceed to a neighboring state even if the move causes the 
value of the objective function to become worse, and this allows it to prevent falling in 
local optimum traps. TS-SA approach will join these two advantages [14]. Javid and 
Azad [14], Lin et al. [16] used this TS-SA in their research for VRP and Location 
problem respectively. Our TS-SA heuristic is similar to theirs but differs in neighborhood 
constructions and considering frequency selection. 
 

T0 : Initial temperature 
T : Current temperature 
α : Decreasing rate of current temperature (cooling schedule), 0 < α < 1 
FT: Freezing temperature (temperature at which the desired energy level is reached) 
MaxNum : Maximum number of accepted solutions at each temperature 
Num : Counter for number of accepted solutions at each temperature 
NOIMPROVE : Maximum number of iterations to run algorithm 
Noimprove : Current number of iterations that the best solution is not improved 
X0 : Initial solution 
X : Current solution in algorithm 
Xnh : Solution which is selected in neighborhood of X in each iteration 
Xbest : Best solution obtained in algorithm 
C(X) : Objective function value for solution X 

 
Procedures: 
1. Take the initial solution X0, and set Xbest = X0, X = X0, T = T0. Num = Noimprove = 0. 

The initial solution can be generated randomly or just use the output of modified 
sweep method. 
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2. Generate a feasible solution Xnh in the neighborhood of X using moves. 
3. If the move generated Xnh in the tabu list and  Xnh is not the best solution found so far, 

go back to generate another neighborhood, and update the tabu list. 
4. Num= Num+1.Update the tabu list and letΔC = C(Xnh) – C(X). 

   If 0CΔ ≤ , then X = Xnh. If C(Xnh) < C(Xbest), Xbest = Xnh, Noimprove = 0. 
   If 0, (0,1), /C y U z T CΔ > ← = Δ . If y < z and ΔC < T, then X = Xnh, In this case, 
we may move to a solution that is worse than current solution. 

5. Whether Num < MaxNum? If yes, go to Step 2; if not go to Step 6. 
6. Noimprove = Noimprove+1, T = αT. 
7. Is the stopping criterion (T < FT or Noimprove < NOIMPROVE) matched? If yes, 

stop; or else go to Step 2. 
 

Neighborhoods of current solution are generated using the following moves. Before 
stating these moves, we have two definitions to declare: 

 
Distance between two routes: For all pairs of retailers in two different routes, the 

smallest possible distance between two retailers is called the distance between these two 
routes. Let Sk be the set of retailers included in route k; Dij be the distance between 
retailer i and j, and DRmn be the distance between route m and n, then: 

arg min{ } ,    mn ij m nDR D i S j S= ∈ ∈  
Adjacent route: Two routes are called adjacent if the distance between these two 

routes is smallest compared to other routes (or within some predetermined value).  
 

Move 1: Select two retailers in one route and then exchange their delivery order. 
Move 2: Select two retailers from two adjacent routes and then exchange them. 
Move 3: Select one retailer randomly and insert it to an adjacent route. 
Move 4: Select one retailer randomly and then open a new individual route for it. 
 
Pseudo code: 

Take the initial solution X0, and set Xbest = X0, X = X0, T = T0, Noimprove = 0. 
While (T > FT & Noimprove < NOIMPROVE ), do 

   { 
For (Num = 0; Num <= MaxNum; Num++), do: 
{ 

Generate a neighborhood solution Xnh. 
If (Xnh is not in the tabu list) 
{ 

Update the tabu list; ΔC = C(Xnh) – C(X). 
If ( 0CΔ ≤ ) 
{ 

X = Xnh.  
If ( C(Xnh) < C(Xbest) ) 
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Xbest = Xnh,  Noimprove = 0. 
} 
Else 
{ 

(0,1), /y U z T C← = Δ .  
If (y < z and ΔC < T) 

X = Xnh 
} 

} 
Else If (Xnh = Xbest) 

X = Xnh  
}  
Noimprove = Noimprove+1. 
T = αT.  

  }  
 
4.3 Integrated Local Search Method (ILS) 
 
A distinction of this research is to simultaneously consider routing tour and routing 
frequency over an infinite planning horizon while traditional routing solution methods 
usually only focus on routing tour. In order to capture routing frequency, we propose this 
integrated local search method. 

The basic idea is to generate an initial solution where each retailer is serviced by one 
individual tour, and then try to merge retailers into one route. The optimal routing 
frequency for each retailer under an individual tour is called the natural frequency for 
this retailer. This heuristic is also suitable if natural frequency is given in reality, for 
example, some retailers receive orders daily/weekly. 

When calculating the natural frequency, routing cost per trip is calculated as one fixed 
vehicle cost plus variable cost from DC to the retailer. This is considering the 
performance of one retailer in a joint routing tour with multiple-retailers. The routing cost 
for one retailer in such a tour is only part of one fixed cost and some insertion distance 
from previous/next neighborhood. In the computing step, we also introduce another two 
scenarios: “Fixed cost + Variable cost (twice the distance from the DC)” and "[Fixed cost 
+ Variable cost (Distance limitation)] / Average number of retailer in one route", all three 
scenarios' results are compared. Scenario two implicitly assumes single retailer rates. 

Since the available values for routing frequency are discrete (daily, once other day, 
weekly, biweekly and assume 1 year = 350 days), the natural frequency for each retailer 
will be found by searching for the lowest cost policy over these options.  Whether to 
merge two retailers depends on two factors: the distance between these two retailers and 
similarity in natural frequency. If two close retailers have similar natural frequency, using 
one vehicle to serve both of them will reduce the total cost.  
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Procedures: 
1. Calculate natural frequency for each retailer. 
2. Divide all retailers into different groups based on natural frequencies, retailers in the 

same group will have the same natural frequency. In this research, four groups will be 
generated with routing frequency to be 350, 175, 50, and 25, respectively. Call these 
four groups to be G1, G2, G3 and G4. 

3. Use embedded modified sweep method to merge retailers in group G1 (the group with 
largest routing frequency).  

4. After generating tours for all retailers in group G1, try to insert other retailers in other 
groups (in the order of G2, G3 and G4) in current routes. The motivation to do this step 
is because of the possibility of the following case: 
 

 
Figure 2: Insertion example 

 
In this case, one route is generated to serve retailer 1, 2, 3 and all these three retailers 
have the same routing frequency. The distance limitation is validated if we want to 
add any other retailer from group G1. However, one retailer (retailer 13) is very close 
to retailer 1 and has a natural frequency smaller than G1. If adding retailer 13 does not 
violate any distance/capacity constraint, the total cost may be less if inserting retailer 
13 into current route. This is also the reason why we start from the largest frequency 
group G1. Merging a retailer with smaller natural frequency to a route with larger 
routing frequency will reduce the average cycle inventory level at this retailer, so the 
inventory cost will be reduced. And since we use extra truck capacity and little 
additional variable routing cost to serve another retailer, the total routing cost will 
also be reduced.  

5. Repeat the same process of step 3 and 4 for retailers in group G2, G3 and G4 
respectively. 

6. *After generating an initial solution from the above five steps, we can add an 
improvement step using Tabu search. Neighborhoods can be generated by two moves 
introduced in section 4.2, however, negative gain is not allowed here. A solution is 
updated only if one neighborhood has smaller objective value. We will compare the 
results whether adding step 6 or not the computing step. 
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In the Modified Sweep method, the final solution should be several disjoint routes 
since we add retailers by sweeping one line clockwise. However, in this method, the final 
solution may have a structure as shown in Figure 3. Two routes are overlapped but with 
different routing frequency. For example, route 1 deliveries products daily, while route 2 
deliveries products weekly. 

 

 
Figure 3: Routing structure 

 
 Pseudo code: 
  Calculate natural frequency for each retailer. 
  Divide all retailers into different groups based on their natural frequencies. 
  Let S = number of groups (S = 4). 
  For (i = 1; i <= S; i++) 
  { 

If (Group i is not empty) 
{ 

Use modified sweep method to merge retailers in Group i. 
Same procedure as in modified sweep, sweep clockwise and anti-clockwise from 
each retailer. 
Find the optimal starting point r and direction. 
For(j = i+ 1; j <= S;  j++ ) 
{ 

If (Group j is not empty) 
Try to insert retailers in Group j to existed routes; 

} 
} 

} 
(Improve current solution by Tabu search by setting it as the initial solution.) 
 
4.4 Hybrid Genetic Algorithm Method (HGA) 

 
A genetic algorithm (GA) is a search heuristic that mimics the process of natural 
evolution. This heuristic is routinely used to generate useful solutions to optimization and 

Route 1

Route 2

DC
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search problems. Genetic algorithms belong to the larger class of evolutionary algorithms 
(EA), which generate solutions to optimization problems using techniques inspired by 
natural evolution, such as inheritance, mutation, selection, and crossover. A simple 
procedure for traditional GA is shown as follows: 
 
Procedures: 
1. Set t = 0. Initialize Population P(t) with randomly constructed solutions. Alternatively 

use results from heuristics (i.e., modified sweep method) as partial population.  
2. Evaluate the feasibility and fitness function of individuals included in P(t). 
3. Apply Crossover and Mutation operators to obtain a set C(t) of candidates that can 

satisfy problem constraints. 
4. Evaluate the set C(t) of candidate and select the best individuals with respect to 

fitness value to add to new Population P(t+1). The new population consists of the best 
PS (population size) chromosomes from P(t) and C(t). 

5. t = t + 1, while stopping criteria are not met do, go back to step 2. 
6. End and keep the best individual of the last population as the solution of the problem. 
 

The idea for our hybrid heuristic is to use a genetic algorithm (GA) to generate/update 
a fixed partition for all retailers. A TSP is solved within each partition and optimal 
delivery frequency is selected accordingly. In a fixed partition policy (FPP), the retailers 
are partitioned into disjoint and collectively exhaustive sets. Each set of retailers is served 
independently of the others and at its optimal replenishment rate. The framework is 
shown in Figure 4, where GA is used to generate and update fixed partition, TSP is 
solved by 2-opt heuristic. 

 
4.4.1 Chromosome Representation  
 
In our research, the real number of vehicles used is an unknown variable, but the 
maximum number will be the number of retailers, in this case, each retailer is serviced by  
one individual route. The length of a chromosome is equal to the number of retailers N. 
Each gene of the chromosome is related to a retailer and is assigned to an integer number 
between 1 and N. If the ith gene is assigned to integer m, for instance, then it means that 
retailer i is served by vehicle m.  

 
1 2 3 4 5 6 7 8 9 10
2 1 4 2 1 1 4 3 3 2 

 
The above chromosome represents a 4-vehicle solution, vehicle 1 services retailer 2, 5 

and 6, vehicle 2 services retailer 1, 4 and 10, etc. 
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Figure 4: HGA framework 
 

4.4.2 Chromosome Justification  
 
The chromosome representation introduced above is easy to understand, but there will be 
an issue in practice. For example, the following two chromosomes actually represent the 
same solution. It’s a 4-vehicle solution with one vehicle services retailer 1,4,10; one 
vehicle services retailer 2,5,6, one vehicle services retailer 8,9 and one vehicle services 
retailer 3,7. 

1 2 3 4 5 6 7 8 9 10
2 1 4 2 1 1 4 3 3 2 
5 1 3 5 1 1 3 2 2 5 

 
The differences in chromosomes' representations come from the order of different 

routes. To deal with this symmetry and make the further calculation easier, we will do a 
chromosome justification every time after generating a new chromosome. 

 
Justification: Number retailers from 1 to N. Following the order of retailers, each 

retailer is assigned to the smallest available vehicle number.  
By adopting this justification, the above two chromosomes will be modified to: 
 

1 2 3 4 5 6 7 8 9 10
1 2 3 1 2 2 3 4 4 1 
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4.4.3 Crossover 
 
Crossover is a mechanism in which the information between two chromosomes is 
exchanged randomly. We can use two-point crossover operator, for example: 

 
1 2 3 4 5 6 7 8 9 10
1 2 3 1 2 2 3 4 4 1 
1 2 3 4 2 1 5 4 5 3 

After crossover: 
1 2 3 4 5 6 7 8 9 10
1 2 3 4 2 1 3 4 4 1 
1 2 3 1 2 2 5 4 5 3 

 
Or, we can use one-point crossover operator, for example: 

  
1 2 3 4 5 6 7 8 9 10
1 2 3 1 2 2 3 4 4 1 
1 2 3 4 2 1 5 4 5 3 

After crossover: 
1 2 3 4 5 6 7 8 9 10
1 2 3 1 2 1 5 4 5 3 
1 2 3 4 2 2 3 4 4 1 

 
4.4.4 Mutation 
 
In a mutation operator, each gene can change to a different integer number with a defined 
probability, two examples: 
 

1 2 3 4 5 6 7 8 9 10
1 2 3 1 2 2 3 4 4 1 

 
Example 1 

1 2 3 4 5 6 7 8 9 10
1 2 3 1 4 2 3 4 4 1 

 
Example 2  

1 2 3 4 5 6 7 8 9 10
1 2 3 1 5 2 3 4 4 1 

  
In the first example, the number of routes does not change, but the real routes change. 

In the second example, by assigning retailer 5 to route 5, the original 4-route solution 
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becomes a 5-route solution. Also we check if justification is necessary whenever a new 
chromosome is generated. 

 
4.4.5 Fitness Function (ff) 
 
The fitness score is a possibly-transformed rating used by the genetic algorithm to 
determine the fitness of individuals for mating. In this heuristic, we use objective 
function (total cost) directly as fitness score. It is probabilistically possible for infeasible 
solutions to survive. A penalty value (a big positive number M) is applied to the fitness 
function without removing infeasible solutions. The logic behind this is that an optimal 
solution may exit with high probability near an infeasible solution. However, at the same 
time, the proposed algorithm will record the best feasible solution. Since the fitness 
function here is actually the total cost, then the smaller the value is, the better the 
chromosome is. 
 
4.4.6 Selection 
 
The roulette wheel selection operation [13] is adopted to choose some chromosomes to 
undergo genetic operations. The approach is based on an observation that a roulette wheel 
has a section allocated for each chromosome in the population, and the size of each 
section is proportional to the chromosome’s fitness: the fitter the chromosome, the higher 
the probability of being selected. Although one chromosome has the highest fitness, there 
is no guarantee it will be selected. But on average, a chromosome will be chosen with the 
probability proportional to its fitness. Suppose the population size is PS, then the 
selection procedure is as follows: 

 
1. Calculate the total fitness of the population as FF. 

2. Calculate the selection probability spi for each chromosome Xi: 
( )

( 1)
i

i
FF ff Xsp
FF PS

−
=

−
 

3. Calculate the cumulative probability qpi for each chromosome Xi: 
1

i

i j
j

qp sp
=

=∑  

4. Generate a random number r from a uniform distribution in the range (0, 1]. 
5. If 1i iqp r qp− < ≤ , then chromosome Xi is selected. 
 
4.4.7 TSP 
 
In the first stage, retailers are grouped into several sets and each set is serviced by one 
vehicle. Within each set, we use 2-opt search method to optimize the delivery tour and a 
delivery frequency is selected later. For example, by solving TSP, we get the final 
solution as:  
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Route 1: {1, 4, 10}                                                   DC-4-10-1-DC 
Route 2: {2, 5, 6}                                                     DC-2-6-5-DC 
Route 3: {3, 7}                                                         DC-3-7-DC 
Route 4: {8, 9}                                                         DC-8-9-DC 
 

The total cost can be calculated based on the final routing schedule after selecting 
delivery frequency for each route. 

 
Pseudo code:  
  TG: Number of total generations 
SG: Stop if there is no improvement within such generations. 
sg = t  = 0; 
 
Initialize the Population P(t) 
For (t = 1; t <TG & sg < SG; t++) 
{ 

Apply Crossover and Mutation operators to obtain a set C(t) of candidates; 
Calculate fitness function value of C(t) and update population to new Population 
P(t+1); 
If (any new generated chromosome performs better than best solution in P(t) ) 

sg = 0; 
Else 

sg = ++; 
 

t ++; 
  } 

 
5 Computational Results 
 
To evaluate the performance of our four heuristics, we use the computational experiments 
described in this section. Besides, all direct-shipping method is used to calculate upper 
bound, and total cost estimation and a lower bound are generated using methods 
introduced in Section 3. 
 
5.1 Parameter Settings 
 
Parameter settings are defined in Tables 1 and 2. Retailers are assumed to be randomly 
located in a 200-mile by 200-mile square with the distribution center in the center. 
Number of retailers, holding cost and demand standard deviation were variables shown in 
Table 3 to form 30 scenarios. Mean retailer demand, service level, vehicle capacity and 
speed, distance limit (length of daily tour), location of DC, and fixed truck cost were held 
constants. Vehicle capacity is set to be 150, this value is roughly estimated so that one 
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vehicle is used to serve about 10 retailers every two days (Average demand/10 ≈ 150). 
Deliveries may be made daily, every other day, weekly, or biweekly. 

Additional parameters were set for the TS-SA and HGA procedures as shown in 
Table 3. These were selected based on previous study and preliminary experimentation. 

 
Table 1: Problem parameter settings 

Name Notatio
n 

Value Remark 

Service level zα 1.96 97.50%  
Vehicle capacity C 150  
Distance limit D 500 miles  
Vehicle speed p 500 miles/day  
Fixed cost a $ 5/truck  
Variable routing cost  cd c = $ 0.1mile d = distance 

(miles) 
  

Available frequency/year fn {25, 50, 175, 350} 1year = 350 days 
Location of DC 0 (0, 0)  
Number of retailers N {20, 50, 100, 150, 200}  
Locations of retailers (x, y) [-100, 100] Uniform 

Distribution 
Demand mean/year rμ  10% Low: [50, 150] 

80% Medium: [500, 2000] 
10% High: [10000, 25000] 

Uniform 
Distribution 

Demand standard 
variance/year 

rσ  Low: [1, 5] 
High: [10, 50] 

Uniform 
Distribution 

Holding cost hr Low: $ 10/unit year 
Medium: $ 50/unit year 
High: $ 100/unit year 

 
5.2 Results and Analysis 
 
Five random instances were generated for each experiment scenario. All four heuristics 
were then applied to each instance, and results in the following tables for each scenario 
are the average of those five random instances. For meta-heuristics, the maximum 
running time was set to be 3600 seconds (1 hour). 

Computational times in seconds are shown in Table 4. Table 5 summarizes the 
objective value results. The best value for each scenario is shown in bold font. 

All heuristics except HGA work well in terms of objective values. The HGA takes the 
most computational effort and returns the highest average cost. Comparing to all direct-
shipping method, using routing to serve sets of retailers will reduce total cost by 25.8% - 
51.4%. 
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Table 2: Experiments scenarios 

Scenario (k) N hr σr Scenario (k) N hr σr 
1 20 High High 16 20 Medium Low 
2 50 High High 17 50 Medium Low 
3 100 High High 18 100 Medium Low 
4 150 High High 19 150 Medium Low 
5 200 High High 20 200 Medium Low 
6 20 High Low 21 20 Low High 
7 50 High Low 22 50 Low High 
8 100 High Low 23 100 Low High 
9 150 High Low 24 150 Low High 

10 200 High Low 25 200 Low High 
11 20 Medium High 26 20 Low Low 
12 50 Medium High 27 50 Low Low 
13 100 Medium High 28 100 Low Low 
14 150 Medium High 29 150 Low Low 
15 200 Medium High 30 200 Low Low 

 
Table 3: Heuristics parameter settings 

TS-SA Hybrid GA  
Name Value   Name Value   
T0 1500   Population size 2N 
FT 10  Elite proportion 0.05 
α Uniform: [0.7, 1.0]  Mutation probability 0.05 
MaxNum 500  TG 3000 
NOIMPROVE 5 SG  100 

 
Among all heuristics, Modified Sweep method performs the best and HGA method is 

the worst. Using modified sweep, even the largest case, it only takes 2 minutes and finds 
a good solution. But HGA takes a long time and generates worse solutions. Two major 
reasons may explain this result: 

 
1. Even our modified sweep method is quite straightforward, it has some theoretical 

foundation and captures many important aspect of this routing problem. In our 
problem, we have distance and capacity constraints, and it is preferred to merge near 
retailers together for the consideration of shipping, thus we sweep all retailers 
clockwise and counterclockwise. Every time we decide whether or not to insert a new 
retailer, we modify the route and use 2-opt to improve the route tour. And we also 
consider comparing joint tours and separate frequency tours. 
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Table 4: Computational effect: CPU (sec) 

k MS TS-SA ILS1 ILS2 ILS3 ILS+TS HGA 
1 2 48 0 0 1 44 132 
2 14 182 2 1 4 298 1216 
3 61 247 5 4 8 1214 3600 
4 146 1958 17 13 27 3600 3600 
5 267 2063 47 34 42 3600 3600 
6 2 126 1 0 0 30 98 
7 14 256 1 1 2 553 1346 
8 53 484 6 5 4 1663 3600 
9 158 496 35 16 15 3600 3600 

10 286 908 106 49 35 3600 3600 
11 3 88 0 0 0 36 132 
12 14 322 1 1 1 820 822 
13 56 537 4 3 4 1608 3600 
14 116 1273 5 5 9 3600 3600 
15 237 2753 15 12 14 3600 3600 
16 2 75 0 1 1 44 116 
17 13 146 1 1 1 401 1525 
18 36 253 2 1 8 1660 3600 
19 79 470 6 5 26 3600 3600 
20 171 875 16 13 58 3600 3600 
21 2 74 0 0 0 59 136 
22 9 140 2 2 1 165 1212 
23 28 314 14 19 2 1549 3600 
24 57 346 53 61 20 3600 3600 
25 95 534 163 183 64 3600 3600 
26 2 127 1 0 0 32 151 
27 7 117 2 2 1 1367 1050 
28 26 340 14 15 2 2553 3600 
29 60 364 63 78 19 3600 3600 
30 97 568 195 207 77 3600 3600 

ILS1: a + cdor 
ILS2: a + 2cdor 
ILS3: a + cD / n, where n is the average number of retailers in one route 

 
2. HGA method works by making improvement from operators (crossover and 

mutation). However, with capacity and distance constraints, there is a high probability 
that a child from crossover and mutation is infeasible, especially in large instances. If 
we allow the HGA to run infinitely, it may find the best solution, but this is not 
efficient. 
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Table 5: Summary Comparison: Objective values ($1000) 

k MS TS-SA ILS1 ILS2 ILS3 ILS+TS HGA
Lower  
bound IRCe 

Direct  
shipping

1 45.0 47.3 58.8 56.6 52.3 47.5 45.3 30.8 41.0 71.9
2 99.5 110.6 128.2 131.9 121.2 97.2 109.7 63.4 99.0 174.0
3 198.2 215.2 260.2 271.8 233.0 200.9 250.8 123.9 207.0 363.9
4 288.6 285.7 388.5 409.2 364.4 290.2 347.6 173.7 307.2 548.0
5 373.5 375.1 509.9 525.3 434.7 374.3 485.5 217.4 401.3 723.5
6 33.4 34.5 42.0 37.2 47.3 33.9 35.0 20.8 30.5 57.7
7 84.6 93.0 107.9 109.5 107.2 86.6 91.0 50.3 81.6 152.8
8 145.0 150.2 186.3 200.2 194.9 148.5 175.3 81.8 153.8 279.3
9 200.8 215.3 292.3 285.0 267.3 205.3 224.3 114.2 228.9 413.1

10 271.9 272.3 385.8 381.4 358.2 270.3 347.2 148.3 307.4 555.0
11 37.5 38.2 43.4 46.4 57.4 38.6 37.0 23.4 30.8 52.6
12 68.0 71.4 83.2 88.3 95.1 68.0 77.4 41.8 68.8 114.3
13 138.9 138.0 166.2 169.7 175.7 135.7 160.3 74.9 140.2 235.5
14 214.1 214.5 253.6 265.6 285.1 215.1 264.1 111.4 217.0 369.7
15 274.8 248.0 330.5 347.9 347.7 268.9 351.1 139.3 284.4 482.3
16 30.3 31.5 35.1 36.9 41.8 30.4 29.7 18.2 23.1 42.4
17 80.8 83.6 95.5 99.4 98.1 81.9 87.1 41.9 66.4 119.5
18 142.9 148.3 163.2 167.0 175.6 133.3 175.3 65.8 119.5 217.2
19 209.5 209.3 242.8 249.8 260.6 200.3 233.1 92.7 180.0 325.8
20 248.4 244.6 302.1 311.7 307.6 234.3 333.9 107.7 225.5 408.5
21 16.2 16.9 18.3 18.3 23.6 16.4 17.9 8.7 10.9 23.0
22 36.8 39.3 42.6 42.6 47.6 37.1 38.8 18.4 26.1 55.4
23 76.3 76.6 90.3 85.9 92.0 70.1 90.2 34.5 53.7 112.1
24 108.5 116.9 128.7 125.3 145.0 102.3 143.4 47.2 80.0 163.5
25 149.8 156.1 176.9 174.6 194.1 140.2 191.6 61.9 109.0 224.5
26 16.2 17.1 18.7 17.8 24.4 17.2 16.5 9.0 10.0 21.8
27 34.2 36.3 39.9 38.9 50.0 34.6 38.4 16.3 22.6 50.4
28 65.2 68.2 78.8 77.4 81.9 64.1 70.3 34.6 56.6 100.0
29 99.4 108.5 118.3 119.0 138.8 96.1 136.2 45.5 80.1 153.8
30 139.7 146.9 164.7 163.8 169.0 134.7 188.1 50.7 91.6 214.6
 

LS works very fast in terms of CPU time, but its objective values are much higher 
than MS. If joint with Tabu search, ILS-TS generates better results than MS in large 
scenarios, but CPU time increases because of Tabu search step. So we recommend using 
MS method for IRP in this research stage, and we can also use Tabu search (TS) to 
further improve results from MS method if necessary. 

The saving percentage (1 - best solution / direct-shipping cost) is shown in Table 6. 
When the holding cost and demand variance decrease, the benefits of routing strategy 
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also decreases. Retailers will prefer to order more products each time when their 
inventory cost is lower, so the number of retailers in one route will decrease because of 
capacity limitation. In the extreme case, when the number of retailers in one route is only 
one, this is equivalent to direct-shipping.  Routing strategy will have more benefits if the 
demand or optimal order size of each retailer is small compared to vehicle capacity.  
 

Table 6: Saving Percentage (%) 

hr σr N = 20 N = 50 N = 100 N = 150 N = 200 Average 
High High 37.4 44.2 45.5 47.9 48.4 44.7 
High Low 42.1 44.6 48.1 51.4 51.3 47.5 

Medium High 29.7 40.5 42.4 42.1 48.6 40.7 
Medium Low 29.9 32.3 38.6 38.5 42.6 36.4 

Low High 29.6 33.7 37.5 37.2 37.6 35.1 
Low Low 25.8 32.2 35.9 37.5 37.2 33.7 

  
6 Conclusion 
 
Inventory management and transportation are two major considerations in Supply Chain 
Management (SCM). The coordination of these two drivers is known as the Inventory 
Routing Problem (IRP). In this paper, we address a one-to-many distribution network IRP 
over an infinite planning horizon. 

The major contribution of our research is to propose a novel model to consider 
random demands at retailers and choice of delivery frequency. In the routing stage, we 
consider both truck capacity and distance limitation, and then simultaneously decide the 
optimal routing tours to retailers and routing frequencies of each route. 

IRP is NP-hard in the strong sense, so several versions of four heuristics are 
developed to solve medium and large instances of this problem. All heuristics except 
HGA work well in terms of objective values for this problem relative to an individual 
delivery strategy, but they differ largely in terms of CPU time. Meta heuristics may 
generate a good or even optimal solution if running for a very long time, but we 
recommend using the Modified Sweep (MS) method or MS joint with TS. MS captures 
many important aspect of this IRP, consistently producing good solutions in minimal 
time. 

For future work, it is interesting to develop multiple-product IRP, and current one-to-
many network can be extended to many-to-many network. 
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