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Abstract 

There has been considerable interest worldwide in last few years in the 

growth of third party logistics (3PL) providers. 3PL distribution center 

(DC) enables firms to achieve reduced operating costs, increased revenues, 

and to focus on their core competence. This research aims to find the key 

performance indicators through a survey of a set of DCs and then evaluate 

their efficiency over the period 2005-2007 using data envelopment 

analysis (DEA) models based on selected performance indicators as inputs 

and outputs. Three inputs and two outputs for all DCs from the surveyed 

performance indicators were selected in this study. DEA is a 

non-parametric linear programming technique used to evaluate the 

efficiency of decision making units (DMUs) where multiple inputs and 

outputs are involved. We adopted both the input-oriented CCR model and 

the BCC model that were designed to derive weights instead of being 

fixed in advance and handle positive inputs/outputs. A Malmquist 

productivity index (MPI) analysis further evaluates efficiency change and 

productivity growth between two time points. Our empirical results show 

that scale inefficiency is the major reason for the inefficient DMUs. For 

the future research, more DC data should be collected and different DEA 

models could be applied for other benchmark studies. 

 

1. Introduction 
 

With the increasing global competition, companies across industries and around the 

world regard logistics and supply chain management as key components of their overall 



business success (2009 3PL Study [25]). Third-party logistics (3PL) provider is one that 

provides or manages one or more logistics services for its customers. Outsourcing of 

logistics services to a 3PL enables firms to reduce their payroll and their warehousing 

fixed costs and to focus on their core competency. The 3PL distribution centers (DCs) 

often have an advantage over individual companies, owing to the presence of economies 

of scale and scope. With recent economic downturn and increasing competition, 3PL DC 

managers have to measure the performance relative to its competitors and its previous 

years to continuously improve its market competitive strength. Thus, benchmarking 

seems to be the most suitable way of setting a reliable standard and then measuring the 

operational efficiency of the 3PL DC.  

In the warehouse industry, traditionally productivity benchmark is measured as a ratio 

of a single output to a single input, called single ratio productivity measures (Tompkins et 

al. [26]). However, as production processes have become more complex as in the 3PL DC, 

multiple inputs are often used to produce more than one output. This leads to a set of 

single ratio productivity measures which can be confusing to evaluate – a typical multiple 

criteria evaluation problem. Warehouse performance therefore, has multiple dimensions. 

Data envelopment analysis (DEA), using the linear programming techniques, provides a 

suitable way to establish a multiple inputs and multiple outputs empirical efficient 

function as described by Farrell [11]. The relationship between DEA and single ratio 

productivity measure has been investigated and described in Chen and McGinnis [4]. 

DEA requires the inputs and outputs for each decision-making units (DMUs) to be 

specified. It will then compute efficiency score for each DMU as a ratio of weighted sum 

of outputs to a weighted sum of inputs, where all efficiency scores are restricted to lie 

between 0 and 1. The strength of the DEA is that it allows each DMU to select the 

weights that maximize its own efficiency. On the other hand the efficiency does not mean 

that the DMUs are absolutely efficient but they are relatively efficient among the other 

units. Literature reviews, such as the excellent bibliography in Seiford [24] and Cook and 

Seiford [6], reveal that few researches examining the use of mathematical programming 

and associated statistical techniques to aid decision-making in warehousing 

benchmarking. 

In addition to comparing the relative performance of a set of DMUs at a specific 

period, some researches extended the DEA to include more than a single time period and 

treat each DMU at different period as different units. Some also used DEA with window 



analysis to evaluate the efficiency trend over multiple year data. However, it is difficult to 

tell the DMUs at latter time period are inherently advantageous over the former ones 

because technological advance has been regularly made overtime. Caves et al. [2] 

proposed a Malmquist productivity index (MPI) which measures several DMUs at several 

time points and differentiates the productivity change results from efficiency change or 

technological change. The most popular method is the one proposed by Färe et al. [9] 

which takes the geometric mean of two MPIs calculated from two time periods. By 

observing the MPI over time, a relatively inefficient DMU determined by using DEA, 

may be the one with the greatest productivity growth. MPI is very useful for calculating 

the productivity change of a DMU, and many applications have been reported in logistics. 

The remainder of the paper is organized as follows. In section 2 we briefly review the 

related literature. Section 3 introduces DEA as a benchmarking method and the 

Malmquist productivity index. In section 4 we describe the data collection and inputs and 

outputs variables. In section 5 we present our empirical results and section 6 gives some 

concluding remarks. 

 

2. Related Literature 

 

Schefcyzk [23] showed that for internal benchmarking, traditional ratio approaches 

correlate with simple DEA models. The case study of sixteen warehouses performance 

evaluation showed that simple cost-based measures to be suitable for internal 

benchmarking. Cohen et al. [5] conducted an industrial survey of service parts logistics 

and defined relevant performance measures and measured the achieved values of such 

measures. However, the comparative results were based on a number of normalized ratios 

of specific financial and service performance variables. 

Hackman et al. [14] argued that ratio-based performance measures are inaccurate and 

inappropriate for warehousing. Data envelopment analysis (DEA) is regarded as an 

appropriate tool for this task because of its capability to capture simultaneous all the 

relevant inputs (resources) and outputs (performances), to construct the best performance 

frontier, and to reveal the relative shortcomings of inefficient warehouses. Ross and 

Droge [22] measured 102 distribution centers’ productivity, and identified distribution 

centers with consistent best performance using facet analysis, and detected performance 

trends using DEA window analysis of 4 years data. 



An internet-based DEA system (iDEA) for warehouses was designed by the Keck Lab 

at Georgia Tech (McGinnis et al. [19]). Because of price sensitivity and service 

requirements among customers, increasing efficiency is of critical importance. Thus, DC 

managers in the competing 3PL environment would like to identify improvements 

through the development of standards for comparison to similarly situated DCs. Johnson 

et al. [16] described the development of large-scale internet benchmarking instance, 

iDEAs-W and their findings from this ongoing collaboration between academia and the 

warehousing industry.  

Hamdan and Rogers [15] proposed a new weight-restricted DEA model with four 

inputs, labor, space, technology cost and material handling equipment cost, and three 

outputs, shipping volume, order filling and space utilization, to evaluate 19 warehouses. 

Zhou et al. [27] developed two DEA models to measure the operational efficiency of ten 

leading 3PL in China with multiple year data. Min and Joo [20][21] also applied DEA on 

evaluating the 3PL providers in USA. De Koster and Balk [8] evaluated the efficiency of 

65 European distribution centers (EDCs) and compare for years 2000 and 2004. They 

found that public EDC warehouses run by logistics service providers are more efficient 

than own-account EDC warehouses. Manrodt and Vitasek [18] identified common 

metrics that impact both distribution and manufacturing. They found that 3PLs are being 

required, measured and rewarded on driving performance for value for their customers. 

Senior management is paying more attention to performance measures to gain better 

understanding of the turmoil in the economy and cut costs through efficiencies. Gu et al. 

[13] reviewed the benchmarking and analytical models for warehouse performance 

evaluation in terms of cost, throughput, space utilization, and service provides. 

To our knowledge, there is only one research applying MPI to evaluate the 

warehouse performance by De Koster and Balk [8]. However, they only compared two 

time points which are 4 years apart (2000-2004) not for consecutive time periods. Our 

research is the first to apply MPI to evaluate the 3PL distribution centers in a period of 

consecutive years. In this paper, we adopt both the Charnes, Cooper and Rhodes (CCR) 

model and Banker, Charnes and Cooper (BCC) model among several different types of 

DEA models. The CCR model differs from the BCC model in that the former considers 

constant returns to scale, whereas the latter considers variable (decreasing or increasing) 

returns to scale and thus mitigates the impact of economies of scale on the efficiency. 

 



3. Methodology 
 

DEA is a non-parametric mathematical programming approach for measuring relative 

efficiencies of comparable DMUs with respect to multiple inputs and outputs in a specific 

situation. With the use of DEA, the most appropriate set of weights for all the inputs and 

outputs are determined so that the resulting efficiency scores are less than or equal to one. 

Consider a set of n DMUs, with each DMU j (j = 1, …, n), using m inputs xij (i = 1, …, m) 

and generating s outputs yrj (r = 1, …, s). In the absence of priori knowledge on weights, 

vi, ur associated with inputs i and outputs r, the DEA model allows each DMU to choose 

the weights of its inputs and outputs in order to maximize its own efficiency score with 

respect to the others. Charnes et al. [3] solved the particular non-linear programming 

problem to obtain the appropriate weights for a given DMU. Specifically, the CCR model 

for measuring the technical efficiency of that targeted DMU0 is given by the solution to 

the fractional programming problem as follows. 
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This model which involves the weighted ratio of outputs to inputs is referred to as the 

input-oriented model. CCR model assumes constant returns to scale (CRS). Applying the 

theory of fractional programming, CCR can be converted to a linear programming model 

as follows.  
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By duality, this problem is equivalent to the linear programming problem. 
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The slack variables for the ith input and the rth output are, respectively, represented by 


is  and 

is , which indicate the input excess and output shortfall, respectively. The 

variable j denotes the weight of DMUj while assessing the performance 0 of the object 

DMU0.  is the non-Archimedean constant. 

The above model is solved n times to evaluate the relative efficiency score of each 

DMU. Note that the weight vi, ur associated with inputs i and outputs r will be optimally 

determined by maximizing the efficiency score of the targeted DMU0. An efficiency 

score of 1 indicates that the targeted DMU is efficient relative to other DMUs and lies on 

the efficiency frontier, which is composed of the set of efficient DMUs. An efficiency 

score of less than one indicates the targeted DMU is inefficient. 

 

3.1 BCC Model 
 

Banker et al. [1] (BCC) extended the earlier work of Charnes et al. [3] by providing for 

variable returns of scale (VRS) and thus mitigates the impact of economies of scale on 

the operational efficiency. The BCC model adds an additional variable u0 to identify the 

returns of scale of the targeted DMU. The linear programming model of BCC is 
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0u unconstrained in sign 

The dual for which is given by the following. 

)(
11

0 






 
m

i
i

s

r
r ssMin 


  

00
1

.. ii

n

j
ijj xsxTS   


  i  

0
1

rr

n

j
rjj ysy  


  r  

1
1




n

j
j   

0,, 
rij ss  rji ,,  

0 unconstrained  

(5)

where 0 is the resource input efficiency ratio for DMU0. Compared to the CCR, BCC 

has the additional convexity constraint 1 j j causes the feasible region of the BCC to 

be a subset of the CCR. The optimal solution to (5) implies that DMU0 is efficient if and 

only if the followings hold: (1) *
0  = 1.00 and (2) all slacks 00.0 

ri ss . DEA 

generates an efficiency frontier consisting of the piece-wise linear combinations of the 

efficient DMU called the reference set.  

 

3.2 Malmquist Productivity Index 
 

Malmquist productivity index (MPI) first introduced by Malmquist [17] has further been 

studied and developed in Färe et al. [9][10]. Färe et al. [9] constructed the DEA-based 

MPI as the geometric mean of the two Malmquist productivity indices of Caves et al. 

[2] – one measures the change in technical efficiency and the other measures the shift in 

the frontier technology. Färe et al. [10] developed it into the output-based Malmquist 



productivity change index. The input-oriented Malmquist productivity index of a DMU 

can be expressed as  
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M0 measures the productivity change between periods t and t + 1, productivity declines if 

M0 < 1, remains unchanged if M0 = 1 and improves if M0 > 1. The frontier technology 

determined by the efficient frontier is estimated using DEA for a set of DMUs. However, 

the frontier technology for a particular DMU under evaluation is only represented by a 

section of the DEA frontier or a facet. Färe et al. [10] decomposed the MPI in eq. (6) into 

two terms, as shown in eq. (7), that makes it possible to measure the change of technical 

efficiency and the shift of the frontier in terms of a specific DMU0. This implies that 

productivity change includes efficiency change as well as technical change component.  
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The first term on the right hand side captures the change in technical efficiency (EC) 

between periods t and t + 1. EC > 1 indicates that technical efficiency change improves 

while EC <1 indicates efficiency change declines. The second term measures the 

technology frontier shift (TECH) between periods t and t + 1. A value of TECH >1 

indicates progress in the technology, a value of TECH < 1 indicates regress in the 

technology. TECH = 1 indicates no shift in technology frontier. The technical efficiency 

change can further be decomposed into scale efficiency change (SECH) and pure 

technical efficiency change (PTEC) which is similar with the DEA-BCC model (Färe et 

al. [9]). 

 

4. Data and Inputs/Outputs  
 

4.1 Data 
 

The assessment of operational efficiency using DEA begins with the selection of 

appropriate input and output measures. The input and output variables for measuring the 



efficiency of warehousing industry tends to be diversified in the literature, due to the lack 

of uniform performance evaluation criteria. Considering data availability and 

summarizing from what were used in the past studies, we first listed a set of performance 

metrics for the participants to select what are considered important for evaluating the 

distribution center performance. This survey was conducted in February-March 2009 

with responses solicited by the members of the Logistics Association in Taiwan. 

Personnel interviews were also conducted to understand the specifics of their businesses 

and to clarify their responses to the questions. All results are presented in an anonymous 

manner, to preserve respondent confidentiality.  

The participants were asked to rate each key performance indicator on a scale from 1 

to 5, with 1 best the least important and 5 being the most important. The collected data 

were then analyzed to derive the rank for KPIs. Table 1 presents the top 10 KPIs from the 

survey. These KPIs can be considered as five sets, customer, operational, financial, 

capacity/quality and employee, which is consistent as those defined by Manrodt and 

Vitasek (2009).  

 

Table 1. The Top 10 Used Key Performance Indicators in DCs 

Performance indicator Score rank 

Order picking accuracy 4.8462 1 

On-time shipment 4.5385 2 

Employee productivity 4.5385 2 

Distribution cost per order  4.5385 2 

Average warehouse capacity used 4.4615 5 

Order picking productivity 4.3077 6 

Inventory turnover 4.3077 6 

Revenue per area 4.1538 8 

Asset turnover rate 3.9231 9 

Return order process 3.9231 9 

 

In March-April 2009, we sent out the second questionnaires to collect data for years 

2005-2007 from the DCs who returned the first questionnaire. 11 distribution center 

operators and managers returned the second questionnaire. The number of DCs is less 



than we expected. It is found that some confidential data is difficult to be obtained as 

companies may not want to share out the data or some data were not recorded or 

maintained across all participating DCs. To comply with the rule of thumb, the number of 

units should be at least twice the number of inputs and outputs considered (Golany and 

Roll [12]), we select three inputs and two outputs. The descriptive statistics of these 

variables are listed in Table 2. Sections 4.2 and 4.3 presented these variables. 

 

Table 2. Descriptive Statistics of Inputs and Outputs during the Three-year Span 

 Item Maximum Minimum Average Std. dev. 

Number of imperfect 

orders 
8,200 8 761.364  1,853.939 

Number of employees 280 5 98.303  79.899  Inputs 

Average warehouse 

capacity used (%) 
145.2  24.4  81.59  24.39  

Revenue (in NT$1,000) 1,430,000 40,000 326,689.85  401,950.28 
Outputs 

Total number of orders 7,500,000 4,560 887,817.42  1,955,984.69 

 

4.2 Inputs 
 

1. Number of imperfect orders – A perfect order must fulfill the following components: 

delivered on time, shipped complete, shipped damage free, and correct 

documentation. If one or more of the four components are not achieved, that order 

will be count as an imperfect order.  

2. Number of employees – the index constructed to represent the labor input is the sum 

of the number of direct and indirect labor performing all operations in the 

warehouse. 

3. Average warehouse capacity used – the ratio of average capacity used (measured in 

number of pallets) and capacity available (measured in the number of pallets that a 

warehouse can store). At some distribution center, if the pallet rack cannot 

accommodate all the pallets, the pallets will be put on the aisles. Thus, some of the 

average warehouse capacity used is more than 100%. Since we want to minimize the 

input, we use the reciprocal of average capacity utilization as the third input. 



4.3  Outputs 
 

1. Revenue – better service quality and more efficient utilization of DC resources will 

enhance revenue.   

2. Total number of orders – the picking/shipping workload is driven by the number of 

orders. Since these DCs do not track the number of cases or lines for the orders, we 

can only use the total number of orders as the output. 

We view those inputs as discretionary inputs, since a warehouse manager can exercise 

a reasonable degree of control over these inputs. Since the output of a warehouse is 

typically not within the control of the warehouse manager, we focused on this 

input-oriented DEA instead of the out-oriented DEA, which determines the increased 

level of output that could be obtained using no more than the current levels of input. After 

selecting the inputs and outputs, we used Person correlation analysis to test whether they 

are isotonic, i.e. increasing inputs should not reduce outputs. As shown in Table 3, the 

variables selected are positively correlated. 

 

Table 3. Person Correlation Coefficients of Inputs and Outputs 

 
Number of 

employees 

Number of 

imperfect orders

Average warehouse 

capacity used 

Total number of orders 0.171 0.322 0.712 

Revenue 0.188 0.699 0.258 

 

5. Empirical Results 
 

In general, DEA solutions require solving a linear programming model for each DMU. 

Because of the risk of degeneracy even for small datasets, calculations with standard LP 

software are subject to inaccuracies. Therefore, this study used DEA solver – Pro 6.0 [7] 

to compute efficiency scores and MPI. 

Each DC’s efficiency score (TE) under constant returns to scale and pure technical 

efficiency (PTE), scale efficiency (SE) and returns to scale (RTS) under variable returns 

to scale over the period 2005-2007 are presented in Table 4 where the last row shows the 

annual average score. According to Table 4, average efficiency scores show an upward 



trend from 2005 to 2007. Trends of PTE and SE are similar to that of TE. The implication 

of this rise is that DCs not only operated at the proper size but that the resources were 

well managed.  

 

Table 4. Annual TE, PTE, SE and Return to Scale for Each DC 

 2005 2006 2007 

DMU TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS

A 0.504  0.877 0.575  IRS 0.475 0.924 0.514 IRS 0.443 0.906  0.489  IRS

B 1.000 1.000 1.000 CRS 1.000 1.000 1.000 CRS 1.000 1.000 1.000 CRS

C 0.305  0.619 0.493  IRS 0.317 0.664 0.477 IRS 0.354 0.957  0.370  IRS

D 0.505  0.890 0.568  IRS 0.629 0.900 0.699 IRS 0.589 0.790  0.745  IRS

E 0.341  0.892 0.383  IRS 0.567 1.000 0.567 IRS 0.919 1.000 0.919  IRS

F 0.206  1.000 0.206  IRS 0.270 1.000 0.270 IRS 0.253 1.000 0.253  IRS

G 1.000 1.000 1.000 CRS 1.000 1.000 1.000 CRS 1.000 1.000 1.000 CRS

H 0.515  0.870 0.593  IRS 0.738 0.912 0.809 IRS 0.917 0.975  0.940  IRS

I 1.000 1.000 1.000 CRS 1.000 1.000 1.000 CRS 1.000 1.000 1.000 CRS

J 1.000 1.000 1.000 CRS 1.000 1.000 1.000 CRS 1.000 1.000 1.000 CRS

K 0.351  0.785 0.447  IRS 0.358 0.901 0.398 IRS 0.334 0.864  0.387  IRS

Avg. 0.612 0.903 0.660  0.669 0.936 0.703  0.710 0.954 0.737  

 

In terms of efficiency score alone in Table 4, we can find that four of the 11 DCs, B, 

G, I and J, are considered to be efficient DMUs over the entire period. The relatively high 

number of efficient DMUs could result from the fact that we used only 11 DMUs. In 

checking each DMU, DC F shows that the inefficiency is due to its scale inefficiency. 

DMUs E and H show persistent progress in efficiency score during the three-year period, 

while DC A’s efficiency score declines year by year due to its scale inefficiency. In terms 

of returns to scales, those four efficient DCs show constant returns to scale while the rest 

of 7 relatively inefficient DCs are experiencing increasing returns to scale. This indicates 

that these inefficient DMUs should invest more on the resources to increase the efficiency. 

Table 5 presents the average TE, PTE and SE for each DUM over the three year period. 

Four DCs’ (A, C, D, and K) three kinds of average scores are all below the average. DCs 

F and K show that the inefficient score are due to scale inefficient, while DC H’s 



inefficient is because of pure technical inefficient. 

 

Table 5. Average TE, PTE and SE for Each DC 

DMU TE PTE SE 

A 0.474 0.902 0.526 

B 1.000 1.000 1.000

C 0.325 0.747 0.447 

D 0.574 0.860 0.671 

E 0.609 0.964 0.623 

F 0.243 1.000 0.243 

G 1.000 1.000 1.000

H 0.723 0.919 0.781 

I 1.000 1.000 1.000

J 1.000 1.000 1.000

K 0.348 0.850 0.410 

Avg. 0.663 0.931 0.700

 

Table 6 displays each DC’s original Malmquist productivity index (MPI), technology 

frontier shift (TECH) and change in technical efficiency (EC) over the period 2005-2007. 

The last row shows the average scores while the last columns present the average MPI, 

TECH, and EC for each DMU, respectively. Note that, if a DMU’s productivity grows 

from period t to t+1, its MPI is larger than 1. EC measures whether the DMU has moved 

closer to or away from the frontier, and TC measure whether the frontier has moved 

outward or inward. Note that, in Table 6 only DC A does not show technical efficiency 

progress from 2005 to 2007; on the other hand, we can conclude that other DCs show 

improvement and decline in technical efficiency change. DCs E and H improve their 

performance over the average year after year. For all the DCs, technical efficiency 

improves 13.1% from 2005 to 2006 and improves 5.0% from 2006 to 2007. 

It can be seen in Table 6 that on average, the technology frontier improves 3.8% from 

2005 to 2006, and improves 7.8% from 2006 to 2007. Only DC I show negative shift in 

technology frontier between 2005 and 2007, though I is technical efficient in all three 

years. It can also be observed, on average, that there is about a 17.4% productivity gain 



from 2005 to 2006, while from 2006 to 2007 there is about 13.2% productivity gain. 

 

Table 6. Each DC’s MPI, TECH and EC 

 2005 vs. 2006 2006 vs. 2007 Average 

DMU MPI TECH EC MPI TECH EC MPI TECH EC 

A 1.086 1.152 0.942 1.140 1.225 0.931 1.113 1.189 0.937 

B 1.330 1.330 1.000 0.993 0.993 1.000 1.162 1.162 1.000 

C 1.099 1.059 1.038 1.102 0.986 1.118 1.101 1.023 1.078 

D 1.246 1.000 1.246 0.965 1.032 0.936 1.106 1.016 1.091 

E 1.427 0.859 1.661 1.824 1.125 1.621 1.626 0.992 1.641 

F 1.331 1.015 1.311 0.952 1.015 0.938 1.142 1.015 1.125 

G 1.111 1.111 1.000 1.313 1.313 1.000 1.212 1.212 1.000 

H 1.283 0.895 1.433 1.397 1.125 1.241 1.340 1.010 1.337 

I 0.959 0.959 1.000 0.992 0.992 1.000 0.976 0.976 1.000 

J 1.033 1.033 1.000 1.016 1.016 1.000 1.025 1.025 1.000 

K 1.102 1.079 1.021 1.015 1.088 0.933 1.059 1.084 0.977 

Avg. 1.174 1.038 1.131 1.132 1.078 1.050 1.153 1.058 1.091 

 

 Examining MPI, we can observe that all warehouses except warehouse I have 

positive productivity change between 2005 and 2007. Between 2005 and 2006 only DC I 

shows negative productivity growth, however, four DCs show productivity loss between 

2006 and 2007. DCs E and H are relatively inefficient DUM determined by using DEA, 

however, they are both with the greatest productivity growth. On the other hand, DC I 

persistently lying on the efficient frontier is the one needing the most technological 

advance. Without the MPI measures, we may draw a misleading conclusion. The average 

MPI scores and EC scores of DCs E and H are the highest two of all. As both DCs’ 

average TECH scores are below the overall average, it implies that DCs E and H’s 

productivity growth were driven more by efficiency improvement than technological 

advance. In this context, we can find that the trend of continuous improvement of DEA 

efficiency score is also reflected by observing the efficient change of the MPI. 

 

 



6. Conclusion 
 

As competition in the 3PL industry has intensified and cost pressure has mounted over 

the last few years, today’s 3PL distribution centers are faced with daunting challenges of 

continuously improving their operational efficiency and competitiveness. This paper 

applied both CCR and BCC DEA models and the Malmquist productivity index to 

measure the efficiency score and productivity growth changes of 3PL distribution centers 

in Taiwan. The primary objective of this paper is to identify potential sources of 

inefficiency, recognize best-practice 3PLs, and provide useful insight for the continuous 

improvement of operational efficiency. We first identify the key performance indicators 

through a survey of a set of 3PL DCs. Then collect data of those KPIs from 11 

participating DCs over the period from 2005 to 2007 for evaluating their performance. 

The three inputs are the number of employees, number of imperfect orders and average 

warehouse capacity used, and two outputs are revenue and total number of order 

received.  

To summarize, the main contribution of this paper includes the application of both 

CCR and BCC DEA models to the performance measurement of 3PL distribution centers. 

The proposed DEA models can be extended to include other inputs and/or outputs and a 

greater number of 3PLs across the globe. To our knowledge, this paper is the first one to 

evaluate Malmquist productivity index over a period of three consecutive years. Based on 

our empirical results, most of the inefficient distribution centers are due to the scale 

inefficient. All the inefficient DCs exhibit increasing return of scales, which means they 

still have to invest more on the input resources to improve the efficiency scores. When 

considering the DEA results and without the MPI measures, we may draw a misleading 

conclusion. One major shortcoming of this research is the limited number of decision 

making units. Although our number of DMUs follows the rule of thumb that the number 

of DMUs should be at least twice the sum of the numbers of inputs and outputs, it only 

has one more DMU. Increasing the number of DMUs could provide a better performance 

evaluation results.  
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