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Abstract 
 

Drives account in many cases up to one third of the costs of material 
handling equipment. This fact justifies a closer look to important drive and 
motion issues. Typical design criteria for drives are energy and power 
consumption, wear, heat and noise generation. Engineering design 
activities start with the generation of the system configuration, that is to 
make appropriate topological decisions where to locate the drives in the 
equipment structure. These decisions define to a great extent the functional 
quality of the mechanical structure and the distribution of forces in the 
power train. For early design stages an elasto-kinetic model is developed, 
which is later enhanced by a more detailed simulation model. Another 
important issue is the definition of high quality motion profiles defined by 
selected velocity-time relationships. 

 
1 Introduction 
 
In many cases an excentric location of the drives is necessary due to maintenance and 
repair accessibility and also for ease of equipment assembly. Here a wider class of 
excentric drive arrangements is investigated with a general mechanical model. This 
model is valid for vertical arrangements encountered in carousels as well as for horizontal 
conveyors with two tension members. The model contains the equation of motions and 
deformations and their influence on the distribution of the driving forces in the power 
train. 
 Another question is the achievement of high quality motion performance. The criteria 
of high quality motion systems are the accuracy of the motion profile, precision of the 
sequence of motions, assurance of low vibration induction, high energy efficiency and 
limitation of admissible stress in the electromechanical system called power train. 
 In the paper we investigate three different motion profiles with a generally applicable 
method to evaluate their performance related to peak torque, energy efficiency, jerk free 
and jerk limited motion parameters. Parameters are used to describe tradeoffs between 



peak torque positioning and jerk free motion for soft moves as well as low energy 
consumption.  
 This paper contains six sections. In the first section we present an introduction and 
problem statement. The second section contains the investigation of the drive location 
problems. Here our theoretical model of an excentric drive configuration and the 
associated equations of motion are presented. The third section contains the influence of 
quality motion profiles in the drive selection process. The fourth and the fifth section 
present a more detailed multibody simulation model and the results for selected motion 
profiles and a discussion of the tradeoffs according to design criteria. The final section 
contains a summary plus literature references. 
 
2 Drive Location 
 
The first question deals with the location of a drive in conveying units. Fig. 1 shows a 
common application of the drive unit in an excentric position on the drive shaft as 
presented in [1]. 
 

 

 
 
 
 
 

 
 

Figure 1: Conveyor Drive Arrangement. Figure 2: Belt Drive Model. 
 
 Regarding a side view of Fig.1 in the arrow direction of the elevating chain leads to 
Fig. 2 of the dynamic conveyor model presented as belt drive model in [2]. 
 An excentric location has several advantages such as easy access for assembly and 
maintenance, reduction of product contamination due to wear and more rigidity and better 
stability with respect to dynamic motions of the system. In fact the system as shown in 
Fig. 1 is quite general in its possible range of applications. 
 Fig. 1 could be a chain conveyor with horizontal drive shafts. Fig. 1 could also be a 
carousel structure with vertical shafts. In both cases it is important to know the 
distribution of forces in the shafts and the tension members like chains or tooth belts 



resulting from elastic deformations of the exposed members during power transmission. 
In most cases designers are unaware or neglect the substantial influence of the excentric 
drive location, which is investigated in this paper. 
 Thus the mechanical structure consists of the drive unit, two shafts and two tension 
members either in a horizontal or vertical arrangement depending on the material 
handling equipment.  
 The main dynamic motions of mass 1 are the angle φ1 and of mass 2 angle φ2. The 
equations of motions are 

      1 1 1 1 1 2 2 1 1rz r vz vI c c r r r M r F F         (1) 
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 I1,2 [kgm2]  rotational moments of inertia 
 M1,2 [Nm]  torques at shafts 1,2 
 1,2  [1/s2]  angular accelerations 

 crz, cr [N/m] rigidity of tension members 
 Fvz, Fv [N]  pretension forces 
 r1,2 [m]  pulley radius 

 Considering only stationary forces and symmetry in stiffness and geometry in the 
preliminary design stage leads to the assumptions I1,2 = 0, Fvz = Fv, crz = cr equal 
longitudinal stiffnesses of tight and slack side, r1 = r2 = R equal pulley radius resulting 
from (1) and (2). 
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 Thus the relative angular displacement is Δφ12 = φ1 – φ2 with cr = cs/L = EA/L where 
cs is the specific tensional rigidity of the chain, tooth belt or alike. 

 Fig. 1 exhibits the following data 
 EA [N]  longitudinal stiffness of tension member (belt, chain) 
 L [m]  distance between drive and reverse shaft 
 Hu [m]  shorter (left) distance between primary chain drive and sprocket  
 Ho [m]  longer (right) distance between drive and sprocket 
 H2 = Ho+Hu [m] horizontal distance between chains (tension members) 
 Jo,u,2 [m

4]  geometrical moment of inertia with indices from above 
 F1,2 [N]  circumferential forces corresponding to torques M1,2 
 Fw [N] external forces each acting on one chain (tension) member 

resulting from friction and inertial forces 
 G [N/m2]  shear modulus of shafts 

 Thus the total driving force acting on the left and right driving pulley equals 

 1 1 4u o wF F F   (5) 



 Furthermore from Fig. 2 both pulleys are subject to circumferential forces F1,2 
corresponding to torques M1,2 

 1 2 2u u wF F F     wherefrom   2 1 2 22 andu u w u oF F F F F    (6) 

 The basic law of torsional deformation of shafts follows from elasticity theory with 

 1 1M H GJ   (7) 

 Applying this law to all members of the power train contributing to torsional 
deformation for the left belt (chain) model u and setting this equal to the total 
deformation of the right pulley model o results in  

 1 12 2 1 12u u u o o              (8) 

 Here Δφ12 is the angle of torsional deformation between pulleys 1,2 due to the 
longitudinal elastic deformation of the tension members from (4). 
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 This angle needs to be added to the torsional deformation of the shafts. Inserting 
equation (7) and (9) into (8) leads to 
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 Substituting (6) into (10), reducing R/G and replacing F1o from (5) results in 
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 with H = H2/Ho (11) 

 Substituting (11) into (5) leads to the relation of the circumferential forces 
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 If the drive is located completely left, Hu = 0 and H2 = Ho with Jo = Ju = J2 
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results in a hyperbolic function. With K = 1.5 – 4.5 in industrial applications F1u/F1o 
varies between 1.5 and 1.2. 



 If the drive is located in the middle between the two tension members, Ho = Hu =H2/2 
then 
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with equal circumferential forces. 
 The conclusion is that drive forces can be 20 % to 50 % higher on this side, where the 
drive is located closer to the tension member. Thus an excentric drive arrangement needs 
a careful calculation of the forces acting on the two tension members differently. 
 
3 Laws of Motion 
 
Moving a mass M along a distance s within a time T can be performed with different laws 
of motion. Modern type inverters allow virtually any possible motion type. The most well 
known is a linear velocity time relationship shown in Fig. 3 with linear acceleration, a 
constant speed interval and linear deceleration similar to an extension. 
 Three issues are treated here: 

 Which function should be chosen for acceleration/deceleration? 
 How can the travel time T be calculated? 
 How long should the acceleration phase be if power installation is to be 

minimized? 
 

linear quadratic sinus-square 

 
velocity: v(t) = at   v(t) = at2/2T1   v(t) = a/ω sin2(ωt) 

acceleration: a/ā = 1   
1

1
/

1- acc

a a
T T

    a/ā = π/2 

jerk:  da/dt = ∞   da/dt = a/T1   da/dt = a π/Tacc 

Figure 3: Various Speed Profile. 
 



 If constant speed is neglected three speed diagrams describe possible acceleration/ 
deceleration functions. The table shows that the maximum acceleration a related to the 
average ā depends on the type of the speed function and varies between 1 and 1.57 and is 
minimal for the linear profile. However this advantage is counteracted by an infinite jerk 
da/dt, which gives rise to substantial vibrations in the power train. Using quadratic or 
sinus-squared speed profiles, limits these vibrations due to a softer rise of acceleration. 
For a final answer a simulation model can be evaluated as shown in the next section. 
 Calculating travel times T for the different speed profiles and a predetermined 
distance s is simplified extremely when using symmetrical acceleration f1/deceleration f3 
as shown in Fig. 4. 
 

      
Figure 4: Symmetric Speed Profiles. 

 

 max2 accT sT v    if   max accs v T                T1 = Tacc  

 max accT s v T       if   max accs v T  (14) 

 A solution how long the acceleration time should be has been proposed in [4] for 
constant acceleration and is generalized here for the linear speed profile. x is the 
percentage of the total travel time T to be determined for minimum power consumption. 
Then acceleration a = vmax/(xT), inertial forces Fmax = aM = Mvmax/(xT), maximum 
speed vmax = s/T(1 – x), which is independent of the speed profile. 
 Deriving the power necessary for traveling a distance s in time T with a mass M  

 max max maxP F v  (15)  
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 Searching the minimum of Pmax with 

 max 0
dP

dx
    leads to   x = 1/3. 



 That means when choosing acceleration time on third of total travel time the 
minimum power installation is achieved.  
 
4 Multibody Simulation Model 
 
4.1  Basic Relations 
 
In section 2 an elasto-kinetic model revealed the distribution of forces due to an excentric 
drive location. Its limitations are, however, that dynamic forces can be considered only 
very generally. Therefore this second part of the paper presents a reference design 
process for dynamical systems design in an early design stage, focusing on machinery 
part design for low cycle fatigue and thermal design of electrical drives on a rotating shelf 
storage system (carousel storage). Similar models can be developed for other equipment 
types and be adapted to various scenarios, describing customer wishes. The overall goal 
should be a library of simulation models, which can be easily extended and adapted to 
varying conditions. 
 Basic criteria to describe drive efficiencies are effective torque, power consumption 
and cubic torque calculation for mechanical durability of parts. A classic method to 
calculate time-dependent loading for thermal and mechanical processes is now shown. 
The so called effective moment Meff describes thermal loading by adding time-dependent 
motor torque quadratically.  
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 Multiplied by an average speed of rotation neff the effective power Peff can be 
calculated. It represents the nominal load or power an electric drive can deliver. 
Considering the duration of loading leads to operation classes (S1, S3,…). Thus the 
average power Peff must be smaller than nominal power Pnom. 

  , 2 2eff eff shaft acc effP M T n   (19) .eff nomP P   (20) 

 Mechanical durability is calculated from a simplified approach of Miner’s damage 
accumulation theory. This approach uses a cubic equivalent torque Mcub for reducing 
variable actual loads to one single value. The actual load as a single value from a cubic 
mean is compared to nominal value (by a cubic relation) known from component 
suppliers for durable operation. 
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 So for easy early stage accurate dimensioning the following two equations must be 
fulfilled, where M(t) comes from simulation and Mnom and Mmax are given by 
manufacturers of certain parts or from experimental investigations. 

cub nomM M  (22)    maxMAX M t M  (23) 

 The following two basic equations specify power and energy in the system and are 
basic for some later results. 

shaft shaftP M   (24) 
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4.2  Description of Components 
 
The major parts of the system are according to Fig. 5 and Fig. 7: 

 Distance controlled drive torque using various drive strategies (equations 28-29). 
 Elastic shafts. Elasticity and damping from geometry and material. 
 Masses and inertias. Parameters from CAD. 
 Pulleys. Radius from manufacturer. 
 Friction moments and forces, representing real energy dissipation. Assumption 

based on general efficiency. 
 Upper and lower tooth belts divided into small parts length l, with Young’s 

module E and cross section A, which can only build up tension forces and do not 
have stiffness (or very small stiffness modeled for numerical reasons) against 
pressure forces. This detection is controlled by measurement of elongation. cBelt 
corresponds to cr in (3) 

  

.

. .
10000

Belt

EA
for pos elongation

l
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for zero and neg el

l

  

   (26) 

 Figure 5: Carousel. 



 Tooth belt pretension. Modeled by an initial distance and initializing simulation 
afterwards. 

 Twist force, representing the carrier which is connected to the lower and the upper 
belt and therefore can not twist ore rotate. As small rotation is possible due two 
manufacturing tolerances, twist force Ftwist,i of carrier i follows a nonlinear law 
using the difference of absolute position of upper and lower mass xup,i and xdown,i 
which are representing the whole carrier i. factors f, f2 and exponent tw follow 
estimations and the absolute real possible difference of xup,i and xdown,i. 
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 Some functions to calculate equations (20-21). 
 
4.3  Simulation Approach 
 
There are many ways to build up mechanical dynamical models with modern CAE and 
MBS techniques. Two different approaches are described here. One is a mechanical 
system formulation by the classic Newton or Lagrange approach which delivers sets of 
differential equations. Solving them is only in few cases possible by analytic methods, so 
there is a set of software to do this numerically. As well known tool is 
MATLAB/Simulink software which offers possibilities in nearly all fields of technical 
calculation in a very general way. A standard way of description is the signal-flow-based 
way, using a block diagram (Fig. 6, left). 
 On the other hand there is a library based object oriented way using a graphical 
modeling language in form of drag & drop. A very powerful product is ITI-Sim [6] and in 
its later extended releases Simulation X (Fig. 6, right). The major difference is not in 
solving the equations but in building the models, in a more engineering like process. 
 

 

Figure 6: One-Mass-Oscillator modeled in MATLAB/Simulink and ITI-Sim. 
 
 The carousel storage system now is modeled and described as follows. Two revolving 
tooth belts pull the load carriers which are driven by elastic shafts and rigid pulleys. The 



two belts are coupled by the drive shaft, which is divided into an upper and lower part, 
and the reverse shaft. The tooth belt is represented by linear springs with viscous 
damping, divided into small parts between one and the following carriers. Fig. 7 exhibits 
the simulation model of the carousel storage system. 

 

Figure 7: Carousel Storage System Modeled in ITI-Sim. 
 
5 Drive Train Simulation 
 
The following calculations were made when calculating mechanical properties in solving 
the simulation model with some simplifying assumptions. 
 
5.1 Dynamic Force Calculation of Carousel System 
 
The following section describes the dynamic situation in the system resulting in effective 
and cubic moments of drives and mechanical part operated with a linear velocity profile. 
 Taking a closer look to the dynamic loading of lower and upper shaft (Fig. 8) which 
drives the tooth belt pulley there is a factor of 2651/1520 = 1.74 representing the 
maximum torque during acceleration higher than the average torque for acceleration of 
the rigid system as calculated before. Neglecting the influence of the dynamic system, 
modeled by several elastic subsystems, can lead to inappropriate weak parts that would 
not endure the proposed lifetime. So if equation 23 is fulfilled and the cubic moment 
(1579 Nm) is appropriate to the nominal moment (22) one can be sure to have well 
designed parts for early stage dimensioning the whole machine.  



 Taking into account only quasistatic manual calculation (12) delivers a factor 2.38 for 
the relation between F1u/F1o where simulation model shows 3.70. The difference results 
from the simplier modeling for the analytical way, which does not consider influences 
like twist force (27), models only a rigid system and has no influence of discrete mass 
distribution over the tooth belt length. 
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Figure 8: Dynamic Torques at Upper and Lower Shaft. 
 
5.2 Influence of Motion Velocity Profile 
 
Equations for two common known drive strategies to get masses into motion are 
presented in [5] investigating a one-mass oscillation system. The parabolic distance 
profile (linear velocity) results into rectangular accelerations causing impacts to the mass. 
Analogue to figure 3 the distance calculates with H = s(2Tacc): 
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 An optimization step is to use distance functions with higher derivations by the use of 
a sinusoidal profile (sin). Ref. [3] shows a collection of motion profiles.  
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 Very valuable insights are offered by the dynamic model to investigate energy 
consumption where Fig. 9 shows interesting differences between “lin” and “sin” drive 
profile. 
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Figure 9: Comparison of Energies and Power for “lin” and “sin” Drive Profile. 
 

Table 1: Comparison of Drive Profiles According to Fig. 9 

 linear profile sinusoidal profile 
maximum motor power - smaller 

effective motor power smaller - 
maximum torque smaller - 

energy consumption smaller - 
energy loss (friction) - smaller 

 
 The direct comparison between the two presented drive profiles (Table 1) on a first 
look shows the linear profile to be better in two aspects. Also the fourth row in Table 1, 
describing the energy consumption after 2 s, is only smaller with “lin”-profile. The loss 
due to friction is nearly 4.5 % higher (0.94/0.9) for the linear profile. Finally “sin”-profile 
needs a larger drive (with more effective power and maximum torque) but is overall the 
better choice, because of jerk limitation.  

Showing these considerations should inspire to investigate more common use 
profiles in further work, to find optimal drive strategies, based on simulative real dynamic 
conditions. 
 For dimensioning the thermal process in the electric drive Fig. 10 shows the relevant 
effective moment being 103 Nm to fulfill equations 20 (using 17-19). For the acceleration 



the maximum power should not exceed Pmax = 149 ·172 = 25.6 kW. Motor shafts 
dynamical loading has a dynamic load factor of about 149/105 = 1.42. 
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Figure 10: Dynamic Torques at Electrical Drive. 

 
6 Summary 
 
An analytical solution was presented to solve the drive location problem. A refined 
simulation model was developed to extend the static model with dynamic effects in order 
to avoid expensive iteration steps at later design stages. Furthermore this elementary 
model can help to understand and improve the whole system taking dynamic effects into 
account. 
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