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Abstract 
 
Although there are numerous methodologies and research studies on 

machine scheduling, most of the literature assumes that there is an unlimited 
number of transporters to deliver jobs from one machine to another for further 
processing and that transportation times can be neglected. These two 
assumptions are not applicable if one intends to generate an accurate schedule 
for the shop floor. In this research, a flowshop scheduling problem with two 
machines, denoted as M1 and M2, and a single transporter with capacity c is 
considered. The main focus is on the development of a dynamic programming 
algorithm to generate a schedule that minimizes the makespan. The 
transporter takes t1 time units to travel with at least one job from machine M1 
to machine M2, and t2 time units to return empty to machine M1. When the 
processing times for all n jobs on machine M1 are constant, denoted as pj1≡p1, 

and the capacity of the transporter c is at least ( ) 12
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computational complexity of the proposed algorithm is shown to be . ( )3O n
 
 
1.  Introduction 
 
During the past five decades, shop floor scheduling has been a topic intensively 
addressed in manufacturing systems planning and control [1], [6], [11]. Although there 
are numerous methodologies and research studies on machine scheduling, most of the 
literature assumes that there is an unlimited number of transporters to deliver jobs from 
one machine to another for further processing and that transportation times can be 



neglected, which means that jobs are transported to the next machine instantaneously. 
These two assumptions are not applicable if one intends to generate an accurate schedule 
for the shop floor. Furthermore, even though transportation times are considered and 
handled separately from the processing times, most existing models still assume an 
unlimited number of transporters. Integrated scheduling of processing and material 
handling operations involves two types of resources: machines and transporters. Either 
resource could become a bottleneck if not properly scheduled. Thus, incorporating 
transportation in classical machine scheduling will lead to more realistic and accurate 
models for practical implementation in the shop floor.  

Extensive literature can be found on machine scheduling involving time lag which is 
the time between the completion of an operation and the beginning of the next operation 
of a job in a production system. It can be referred to as the transportation, cooling, or 
heating time. In our research, the time lag is considered to be the transportation time 
which is attributed to the actual transportation of a job between processing machines by 
transporters or automated guided vehicles (AGVs). In the classical models, it is assumed 
that jobs can be transported between machines instantaneously. This ideal assumption, 
however, is not applicable to most practical production environments. There are two 
types of transportation time considerations in the literature: one considers only the time 
lag, which implies that transporters are always available [2], [4], [12], [13], [15], [16]; the 
other explicitly takes both transportation time and availability of transporters into 
consideration [3], [5], [7], [8], [9], [10], [14]. In these models, several attributes can be 
configured according to real manufacturing environments: processing times on machines, 
transportation times between machines, number of transporters, and capacity of the 
transporters.  

In this paper, a flowshop manufacturing environment involving processing and 
transportation of jobs is considered. The main focus is on the development of a dynamic 
programming (DP) algorithm to generate a schedule for a two-machine flowshop that 
minimizes the makespan. The two machines, M1 and M2, are available at time zero for 
processing n independent jobs. All jobs begin their processing on machine M1 and 
complete it on machine M2. It is assumed that there is a single transporter of capacity c in 
the flowshop to deliver jobs from M1 to M2. Jobs transported simultaneously in one trip 
from M1 to M2 are defined as a batch. Transportation times between these two machines 
are explicitly considered. Lee and Chen [5] have shown that, under the assumption that 
the processing times for all jobs on machine M1 are equal to a constant value, denoted as 
pj1≡p1, jobs can be pre-sequenced in the same LPT (longest processing time first) order 
on both machines and the problem becomes polynomially solvable. They developed a DP 
algorithm of order . In this research, an improved DP algorithm is proposed 

given that the capacity of the transporter c is greater than or equal to 
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where  is the time that the transporter takes to move a batch of jobs from M1 to ( 21 tt + )
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M2 and return empty to M1. The computational complexity of the new algorithm is 
shown to be . ( )3O n

This paper is divided into five sections. Section 2 includes the problem statement. 
The DP algorithm and the proof of its computational complexity are presented in 
Sections 3 and 4, respectively.  Conclusions and directions for future research are stated 
in Section 5. 

 
 

2.  Problem Description and Notation 
 
In a two-machine flowshop, n jobs need to be scheduled, first on machine M1 and later 
on machine M2. Each machine can only process one job at a time, and preemption is not 
allowed. All jobs are available at time zero and wait for processing in the input buffer of 
machine M1. The processing time on machine Ml for job j is denoted as 1jp  and on 
machine M2 as 2jp . After the operation on machine M1 is completed, jobs are stored in 
the output buffer of machine M1 and wait to be transported to machine M2. We also 
assume that there is a single transporter in the system and its capacity is denoted as c. 
Jobs transported together in one shipment from machine M1 to machine M2 are defined 
as a batch. Let u denote the maximum number of jobs to be transported in a batch. Then, 

. After being transported to machine M2, jobs wait to be processed in the input 
buffer of machine M2. The buffer sizes are assumed to be unlimited. The transporter 
takes  time units to travel from machine M1 to machine M2, and  time units to return 

to machine M1. The departure time of the  batch from M1 to M2 is denoted as . 
Loading and unloading times of jobs on machines are either negligible or assumed to be 
included in their processing times. Similarly, times to load and unload jobs on the 
transporter are either negligible or assumed to be included in the transportation times. 

cu ≤

1t 2t
thk kd

The objective of this study is to minimize the makespan, Cmax. The three-field 
notation | |α β γ  is adopted to represent this machine scheduling problem. In the α  
field, denotes the two-machine flowshop scheduling problem with transportation 
times between machines which is used by Lee and Chen [5]. In the 

2TF
β  field, v denotes the 

number of transporters, and c denotes the capacity of the transporter. In the γ  field, Cmax 
is the objective of the problem. Hence, the scheduling problem to minimize the makespan 
in a two-machine flowshop with x transporters and the capacity of each transporter equal 
to y is can be represented as 2 m| , |TF v x c y C ax= = . 
 
 
3.   Dynamic Programming (DP) Model 
 
According to the paper by Hurink and Knust [3], the two-machine flowshop problem 
with one transporter of capacity one ( 2 | 1, 1|TF v c Cmax= = ) is strongly NP-hard. 
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However, Lee and Chen [5] have shown that, if the following assumption is considered, 
then a permutation sequence of jobs on the machines can be predetermined and, thus, the 
problem becomes polynomially solvable. 
Assumption 1: The processing times for all jobs on machine M1 are job-independent, i.e., 
the processing times are equal to a constant value, denoted as 1 1 for all jp p j≡ .  
 

Under Assumption 1, Lee and Chen [5] proved that there exists an optimal schedule 
for the  problem such that jobs are sequenced in the non-
increasing order of 

2 1 1 ma| , 1, 1|jTF p p v c C≡ ≥ ≥ x

2jp  (the longest processing time first) on both machines. Based on 
this property, they develop a DP algorithm to solve the problem in polynomial time. In 
this research, an improved DP algorithm is proposed when there is only one transporter 
and the capacity of the transporter is greater than or equal to a threshold value u. For this 
special case, the number of jobs in a batch transported from machine M1 to machine M2 
is always less than or equal to this threshold value in an optimal schedule. The threshold 
value will be derived later. 

Lee and Chen [5] have proven several properties that hold for two-machine flowshop 
problems with transportation times. Those properties are also necessary conditions for 
deriving our algorithm.  
 
Property 1 [5]: There exists an optimal schedule for the  problem 
that satisfies the following conditions: 

2 m| 1, 1|TF v c C≥ ≥ ax

t

2

 
(i) Jobs are processed on machine M1 without idle time. 

(ii) Jobs transported in the same batch are processed consecutively without idle time on 
both machines. 

(iii) Jobs finished earlier on machine M1 are delivered earlier to machine M2. 
Furthermore, the sequence of jobs on machine M1 is the same as that on machine 
M2, namely, it is a permutation schedule. 

(iv) The departure times of two consecutive batches delivered satisfy that 
either  or is the completion time of the last job in the (  batch 

on machine M1, where  is the transportation time of a round trip between 
machines M1 and M2.  When 

1k kd d+ = + 1kd + )1 thk +

1t t t= +

1kd + is equal to the completion time of the last job in 

the  batch on machine M1, ( )1 thk + 1kd + is referred to as an integer departure point; 
otherwise, it is called as the immediate departure point. 

 
Given that the processing times for all jobs on machine M1 are identical (Assumption 

1), a property regarding the threshold value of the transporter’s capacity can be derived.  
 

4 
 



Property 2 [17]: There exists an optimal schedule for the 2 1 1 ma| , 1, |jTF p p v c u C x≡ = ≥  
problem, where the number of jobs in a batch transported from machine M1 to machine 

M2 is always less than or equal to a threshold value ( ) 12
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Assumption 2: The capacity of the transporter c is greater than or equal to the threshold 

value ( ) 12
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Based on Assumptions 1 and 2, a forward DP algorithm is proposed to solve the 

 problem. According to Property 2, when the size of a batch 
(denoted as B) is greater than the threshold value u, the batch can always be divided into 

two smaller batches of sizes 

2 1 1 ma| , 1, |jTF p p v c u C≡ = ≥ x

1 2

1

t t
p

⎢ ⎥+
⎢
⎣ ⎦

⎥  and 1 2
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 to yield a smaller makespan. If the 

number of jobs in the second batch ( 1 2

1

t tB
p

⎢ ⎥+
− ⎢ ⎥
⎣ ⎦

) is still greater than u, this batch can be 

further split into two smaller batches 1 2

1

t t
p

⎢ ⎥+
⎢ ⎥
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 and 1 2

1

2 t tB
p
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 until none of the sizes 

of all these small batches is greater than u. Inspired by this idea, a forward DP algorithm 
is formulated below. 
 
3.1. DP Algorithm for 2 1 1 ma| , 1, |jTF p p v c u C x≡ = ≥  [17] 
 
Optimal value function (OVF): F(k) = minimum completion time of a partial schedule 

containing the first k jobs, given that the completion time of job k is an integer 
departure point. 

 
Arguments (ARG): k = index of a job such that the completion time of the job is an 

integer departure point. 
 
Optimal policy function (OPF): j = number of jobs from integer departure point k to the 

previous integer departure point. 
 
Recurrence relation (RR): 

( ) ( ) ( ) ( ){ } ( ) np
ttkkjkCjkFkF

kjp
tt ...,,1,,1min

1
21
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where 

 
is the minimum increase in makespan due to jobs to k . It 

can be calculated by the following procedure: 
( kjkC ,1+− ) 1k j− +
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Step 1:  Let . 0 0 1 01,  1,  ,  ( ) and ( )g x k j x k j t p k j C F k= = − + = − = − = − j

Step 2:  
1 2

0
1

( )

1 0 1 2 1 2max{ , ( ) }
g t tx

p
g g i x

C C t g t t t
⎢ ⎥+
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⎣ ⎦

− =
= + + + +∑ ip . 

Step 3:  1 2

1

( ) ,  1g t tx x g
p
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= + = +⎢ ⎥

⎣ ⎦
g . 

Step 4:  If 1

1 2

jpg
t t
⎢ ⎥

= ⎢ ⎥+⎣ ⎦
, stop and go to Step 5. Otherwise, go back to Step 2. 

Step 5:  1 1 1 2( 1, ) max{ , } k
g ii x

C k j k C kp t p C− =
− + = + + − 0∑ . 

 
Boundary conditions (BC):  
 
 , ( ) 2,1111 ptpF ++=
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where the calculation of is similar to that of C(x, y), but it requires modifications 
on the last four steps as follows: 

ˆ ( , )C x y

Step 2:  
1 2

0
1

( )min{ , }

1 0 1 2 1 2max{ , ( ) }
g t tn x

p
g g i x

C C t g t t t
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Step 3:  1 2

1

( )min{ , },  1g t tx n x g g
p
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⎣ ⎦
+

1p
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Step 4:  If  stop and go to Step 5, and go to Step 5. Otherwise, go 
back to Step 2. 

1 2( 1)( )g t t j− + ≥

Step 5:  . 1 0
ˆ( 1, ) gC n j n C C−− + = −

 
The following property concerning departure points can be stated. 

 
Property 3 [17]: Let  and  be two consecutive integer departure points 
corresponding to the completion times of jobs j and k on machine M1. Between these two 
integer departure points, once the transporter returns to machine M1, it will transport the 
completed jobs immediately to machine M2 until its returning time to machine M1 is 
greater than . 

jd kd

1 2( )kd t t− +

6 
 



 
 
4.  Complexity Analysis 
 
To obtain the complexity of the proposed algorithm, the worst case ( ) is 
considered such that there are a total of n possibilities of k. For a given k, there are k 
possibilities of j since 

1, ,k n= …

1, ,j k= … . Given k and j, there are at most j immediate departure 
points. In addition, in Boundary Condition (BC) we have 1, ,j n= …  and there are at most 
j immediate departure points for a given j. Hence the overall complexity can be 
calculated as follows [17]: 

1 1 1

2

1

( 1)
2

           ( )
2 2

1 ( 1)(2 1) 1 ( 1)           
2 6 2 2

n k n

k j k

n

k

k kj

k k

n n n n n

= = =

=

+
=

= +

+ + +
= +

∑∑ ∑

∑

 
                                         

( 1)( 2)           
6

n n n+ +
= . 

Thus, the complexity of the proposed algorithm is ( )3nO  which is better than ( )( )3ncO . 
 
 
5.  Concluding Remarks 
 
A flowshop scheduling problem with two machines, one transporter with a specific 
capacity, and n jobs available at time 0 has been studied in this paper. The objective is to 
minimize the makespan. When processing times for all jobs on machine M1 are identical, 
a threshold value u for the transporter’s capacity can be derived, as shown in Property 2. 
Under the assumptions of identical processing times on machine M1 and a transporter’s 
capacity greater than or equal to u, the 2 1 1 ma| , 1, |jTF p p v c u C x≡ = ≥  problem can be 
solved in polynomial time by the proposed DP algorithm. The computational complexity 
of the DP algorithm has been shown to be ( )3nO , which is better than complexity of the 
algorithm proposed by Lee and Chen [5]. Therefore, when the capacity of the transporter 
is not less than u (c ), the problem can be solved more efficiently by using the 
proposed algorithm.  

u≥

Many interesting topics on machine scheduling with transportation considerations 
remain for future exploration. Various polynomially solvable special cases need to be 
identified and more realistic models need to be investigated. 
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