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Abstract 
Today, when we talk about “modeling” in the context of material handling systems, 
invariably we are referring to a mathematical or computational model for analyzing some 
aspect of the system, such as its throughput rate, response time, cost of ownership, 
required storage capacity, etc.  Creating these kinds of models requires considerable 
knowledge in at least two domains—the material handling system domain, and the 
analysis methodology domain—and considerable skill in the “art of modeling” in order to 
express the former in the terms of the latter.  The results can be somewhat ad hoc—e.g., 
two different modelers are likely to create two somewhat different simulation models of 
exactly the same material handling system.  In the past, the situation in software 
development was very similar, with individual programming experts idiosyncratically 
driving software development.  Over the past twenty years, however, computer scientists 
and software engineers have created a radically different approach to the process of 
software “modeling” called Model Driven Architecture, or MDA, that is used to create 
software for standard applications.  The thesis of this paper is that MDA can be adapted 
to the kind of modeling done to support design and operational decision making in 
material handling systems.  The paper describes MDA technologies in the context of 
material handling system modeling, and explains how adapting this approach to our 
context will transform the way we do research and the way material handling systems are 
analyzed and designed in practice. 
 

1. Introduction 
The history of engineering is replete with examples of “phase change” in how engineers 
perform calculations and, as a consequence, the scale and scope of calculations that are 
feasible to perform.  Napier’s work with logarithms in the early 17th century gave impetus 
to the invention of the first analog computing hardware, the slide rule, which was the 
workhorse of engineering computation for 300 years.  In the mid 1970’s, the slide rule 
was replaced by the digital “pocket calculator”, and today, engineering computations are 
routinely performed using a variety of software solutions ranging from handhelds to 
laptops to desktops to supercomputers to “cloud computing”. 

As the hardware has changed, so has the software.  Before the slide rule, 
computations were done long hand.  Operating a slide rule required the engineer to have a 
fundamental understanding of those longhand computations.  The widespread adoption of 
engineering calculators meant that users often did not know how to perform the 
fundamental calculations. Spreadsheet programs on personal computers provide an easy-
to-use front-end to complex series of computations, which users may not really 
understand.  Today, students learn high level languages for setting up computations using 



software like MatLab™ (http://www.mathworks.com/) or Mathematica™ 
(http://www.wolfram.com/), or for creating computational versions of mathematical 
models using simulation or optimization solvers; yet they may have a very limited 
understanding of how the computations actually are performed. 

In each phase change, from long hand to slide rule to calculator to spreadsheet to 
high-level language, what has changed is the level of abstraction in how engineers think 
about computations.  We’ve evolved from the abstraction of Arabic numerals and 
arithmetic to logarithms, to automated evaluation of single functions, to automated 
evaluation of simple systems of equations to automation of complex iterative 
computations. 

Each of these phase changes has rendered obsolete the prior way of doing 
engineering computations.  Each has enabled engineers to make more precise 
computations, covering larger and more complex systems.  And each has created 
challenges in engineering education and research, as curricula and research programs 
developed for the previous computing paradigm were forced into sometimes painful 
restructuring. 

The engineering of material handling systems, or more generally, discrete event 
logistics systems (DELS), will soon undergo another phase change as the technologies of 
model driven architecture (Miller and Mukerji 2003) enable fundamental changes in the 
way we think about and analyze these systems.  This phase change will result in a higher 
level of abstraction and is enabled by four specific information and computing 
technology innovations: 

1. Formal systems modeling languages enable the creation of high fidelity 
representations of large complex systems, based on object oriented modeling 
principles and using a mathematically formal schema; 

2. Model transformation languages enable the translation of a formal model in 
one language to a formal model in another language, e.g., from a formal 
model in a system modeling language to a formal model in a simulation 
language or a formal model in an optimization language  

3. Standards for data and information exchange enable the interoperability of 
applications through high level definitions of data content; and 

4. Formal methods for specifying and controlling business process, scientific, 
and engineering workflows. 

Collectively, these four innovations will allow us to change not only how we teach 
students about discrete event logistics systems, but also our fundamental mental model of 
our discipline.  

Using formal languages, we will develop domain specific languages (DSLs) (see 
(anon 2010a) or (White 2009) for a good introduction to DSLs) for particular domains of 
application, such as warehousing, supply chains, or perhaps even more specific domains, 
such as conveyors.  Actual or prospective systems will be specified using these DSLs, 
and model transformation methods will be used to automate the generation of a range of 
analysis models.  Because analysis models will not be hand coded, it will be possible to 
do many more types and iterations of analysis, and these computational analyses will 
become an integral part of DELS design.  The availability of a wide range of analysis 
tools will enable the creation of integrated design processes, which will be implemented 
using engineering workflow managers.  The ultimate result will be that both students and 
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practitioners will have ready access to powerful engineering tools for describing, 
analyzing, and designing material handling systems. 

The remainder of the paper is organized as follows:  section 2 introduces formal 
languages and focuses on SysML and its potential for modeling both the structure of 
DELS and their control;  in section 3, the basic concepts of model transformation are 
introduced, and brief descriptions are given for two applications;  section 4 briefly 
introduces data exchange standards;  the basic concepts of workflow management is 
discussed in section 5, in the context of warehouse design; and finally, in section 6, the 
impact of these technologies is discussed in the context of DELS design and analysis.   
 

2. Formal Languages and Domain Specific Languages 
To say that a language is formal means, in essence, that the language has a 

mathematical specification, and therefore, statements in this language can be processed 
algorithmically.  OMG has developed a four-layer architecture (anon 2010b) for 
specifying and using formal languages, which is illustrated in Figure 1 (taken from 
(Kwon and McGinnis 2010)). 

 

 
Figure 1.  OMG Four-layer Architecture 

 
Level M3 defines the Meta-Object Facility, or MOF, which is a self referencing 

language that can be used to define other languages.  In the illustration, the concept of 
“class” is defined in M3.  Level M2 is where a generic language (meta-model) is defined, 
such as UML or SysML.  In the example, the concept of class is used to define two 
specific kinds of classes, called blocks and attributes.  In addition, a relationship is 
defined to show that an attribute is a part of, or belongs to, a block. 

In level M1, the generic language is used to define a domain specific language, or 
DSL.  In the example of Figure 1, two kinds of blocks are defined—machines and 
material handling devices—and each of these specialized blocks has associated 
specialized attributes as parts.  Finally, in level M0, the DSL is used to describe a 
particular situation, or instance, in the domain of interest.  In figure 1, two types of 
machines are defined, and one type of material handling device. 

SysML™ (http://omgsysml.org/) is a very expressive formal language for 
describing complex systems.  It is both formal and graphical, i.e., the user of SysML can 
construct models by constructing diagrams to create the formal specification.  Figure 2 
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illustrates the types of diagrams available.  An excellent textbook on SysML is 
(Friedenthal et al. 2008). 

 

 
Figure 2.  SysML Diagram Taxonomy (from http://omgsysml.org/) 

 
The right side of Figure 2 identifies the diagram types that allow the specification 

of system structure, by identifying the system components (as “blocks”) and by defining 
the internal structure of blocks (using Internal Block Diagrams or IBDs).  Package 
diagrams provide a mechanism for organizing models, and parametric diagrams provide a 
mechanism for specifying mathematical relationships defined on or between blocks. 

The left side of Figure 2 identifies the diagram types that allow the specification 
of system behavior.  An Activity Diagram is much like a conventional flowchart, and can 
describe a complex process involving both control flows and object flows.  An activity 
can be associated with a block (called the “classifier behavior” of the block).  State 
machine diagrams are a way to represent both the states of a system component, the 
transitions between states, and the events that trigger these transitions.  Associated with 
the entry, occupancy, or exit from a state can be an activity or action that involves other 
blocks. 

Sequence diagrams are a way to specify in detail exactly how two or more blocks 
interact, through message passing.  In particular, sequence diagrams capture timing 
relationships in interactions between or among blocks. 

Huang and McGinnis (Huang and McGinnis 2010) argue that if a DELS can be 
modeled as a finite state machine (FSM)—often considered the most generic modeling 
paradigm for discrete event systems in general—then it can be modeled using a subset of 
SysML consisting of the BDD, IBD, State Machine, Activity, and Sequence diagrams.  In 
fact, this subset of SysML can be used to define a domain specific language or DSL.  The 
Keck Virtual Factory Lab at Georgia Tech has developed several such DSLs, for 
modeling wafer fabs (Huang et al. 2008), supply chains, and electronics manufacturing. 

SysML is described as a graphical modeling language because the diagrams are 
the principle mechanism for constructing models.  However, the model itself is actually a 
type of ontology, which is represented in the so-called “model tree”.  Any one of the 
diagrams provides an easy to comprehend view of some portion of the overall model.  



Figure 3 is a screen shot of one SysML tool (http://www.magicdraw.com/) showing both 
the model tree (on the left of the screen) and a window containing a diagram (on the right 
of the screen).   

 

 
Figure 3.  SysML Modeling Tool Screenshot 

2.1.  An Example 
To illustrate the concept of formal language and the OMG four layer architecture, 
consider a very simple example—a flowshop system in which each workstation has a 
buffer with finite capacity and may have multiple machines in parallel.  Jobs enter the 
system through the first workstation, and exit the system from the last workstation.   

Figure 4 illustrates a simplified domain specific language for this domain, 
constructed using the TopCased (http://www.topcased.org/) implementation of SysML as 
the metamodel.  In this DSL, the key construct is a “block” which may have “connectors” 
to other blocks, “ports” though which blocks may flow, and properties.  Ports have a 
property called “direction”, which has a value type called “flow direction”.  With this 
user model, a specific model can be created, with appropriate numbers of workstations, 
buffer capacities, number of parallel machines, etc. 
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Figure 4.  DSL for Flowshop with Parallel Processes 

(from (McGinnis and Ustun 2009)) 

Figure 5 below contains two SysML diagrams from an instance model created 
with the DSL defined in Figure 4.  The first diagram is an IBD of a specific flow shop 
system with two workstations in series.  The block construct is used to define arrival and 
departure processes and two different workstations.  The second diagram is an IBD of the 
first workstation, showing that it has three machines in parallel, with a single input buffer. 

3. Model Transformation 
MDA depends in a fundamental way upon the ability to automate model 

transformation, i.e., to translate a formal model complying with a given metamodel into a 
different formal model complying with a different metamodel.  OMG’s QVT™ 
(http://www.omg.org/spec/QVT/1.1/Beta2/) is a standard supporting such transformation.  
For example, a formal model created using UML and describing a data-capturing 
operation might be transformed automatically into Java code.  In the context of DELS, a 
formal model created in SysML and describing a manufacturing process might be 
automatically transformed into a formal model of a simulation created using AnyLogic™ 
(http://www.xjtek.com/).  The essential requirements enabling this automated 
transformation are:  the appropriate source and target metamodels, a metamodel for 
transformation, a mapping from the source metamodel to the target metamodel 
conforming to the transformation metamodel, and a transformation engine that uses the 
mapping, can read the source model, apply the mapping to the source model, and write 
the target model.  Figure 6 illustrates the  
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Figure 5.  SysML Model of Flowshop System 

(from (McGinnis and Ustun 2009)) 
 
components and processes for model transformation:  MMa is the source metamodel, 
MMb is the target metamodel, QVT is the transformation metamodel, Ma is the source 
model, Mb is the target model and Tab is the transformation model.  Once Tab is 
specified, any source model, Ma can be automatically transformed into the corresponding 
target model, Mb, using the transformation model Tab and the “Engine.” 

 



 

Figure 6.  Basic structure of model transformation 
 
Kwon and McGinnis (Kwon and McGinnis 2010) investigate the application of 

model transformation to model-based systems engineering, and explain why some 
adaptation is required, relative to the seminal applications in software engineering.  In 
software, the domain specific source model is a description of an application, and this 
model is transformed into a software code for a specific platform (e.g., Java running on a 
Linux operating system).  Transformation at this level is sufficient, since the instance 
data to be processed by the software is important only in terms of its format and 
semantics, not in terms of the specific values of the data;  appropriate interfaces for the 
subject data source can be easily defined.   

For systems engineering in general, and DELS in particular, however, the 
situation is somewhat different.  Consider, for example, the creation of a factory 
simulation model using the MDA approach.  Some of the factory description may be in a 
CAD package, some may be in a spreadsheet, and some in a relational database.  The 
target simulation model will be structured to reflect some of the factory information (e.g., 
the layout), and will use some of the factory information as input (e.g., process plans and 
processing times).  Thus, transformation from source model(s) to a target model must 
consider the instance data of the source model.   

3.1. Example Transformation 
McGinnis and Ustun (McGinnis and Ustun 2009) describe a model transformation for the 
example presented earlier, i.e., from a SysML model of a specific flowshop to an Arena 
simulation model.  The transformation was complicated by the fact that Arena is not 
object oriented, and there is no Arena metamodel.  This difficulty was overcome by using 
the Access model import/export capability of Arena.  A partial metamodel for Access 
was developed and the associated Access data schema was reverse engineered in order to 
establish the necessary mapping from the SysML DSL to Access.  The transformation 
was accomplished using ATL (http://www.atl-pro.com) in the Eclipse domain 

http://www.atl-pro.com/


(http://www.eclipse.org/).  Figure 7 shows a portion of the transformation script from 
ATL and the resulting Arena representation of the flowshop. 

 

 
Figure 7.  Example Transformation Script and Simulation Model 

(from (McGinnis and Ustun 2009)) 

4. Data Exchange Standards 
There are two types of data exchange standards that are important for the future of 

DELS modeling and analysis: W3C’s XML (http://www.w3.org/XML/) (eXtensible 
Markup Language), and OMG’s XMI (http://www.omg.org/spec/XMI/) (XML Metadata 
Interchange).  The well-known XML is a standard that enables the exchange of data 
between processes that may use the same data but perhaps not the same format for 
internally representing the data.  For example, XML encoding allows documents to be 
exchanged between Microsoft Office™ and OpenOffice.  In essence, XML associates a 
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tag with each data element, and the tag identifies the semantic meaning of the data 
element.   

Less well known is XMI, which is an OMG standard for the exchange of 
metadata whose metamodel can be expressed in MOF.   The most common use of XMI is 
for the exchange of UML models, although other model types also can be serialized.   

Both XMI and XML are important in the application of the MDA strategy for 
DELS.  XMI is needed in creating target models through model transformation, because 
the transformation engine must deal with source and target metadata.  XML is needed 
because either or both of the transformation engine and the resulting target models will 
need to read data from disparate sources. 

5. Engineering Workflow Management 
The final technology component is the computational implementation of workflow 
management, i.e., computational processes that manage the sequence and execution of 
steps in a workflow.  The best known examples of workflow management today come 
from the integration of business process workflows.  For example, OMG’s Business 
Process Modeling Notation (BPMN) (http://www.bpmn.org/) and the OASIS Business 
Process Execution Language (BPEL) (http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel) provide, respectively, a standard 
notation for describing business processes, and an execution platform for executing the 
description.  BPMN is a domain specific language used by business analysts to create 
models of business processes, while BPEL is a solution platform more likely to be used 
by IT specialists to implement a business process.  White [x] describes an example of 
both, and the mapping (transformation) from BPMN to BPEL. 

Workflow management also is a concern in science and engineering.  Taverna 
Workbench (http://www.taverna.org.uk/) is a tool developed to support designing and 
executing workflows, primarily in the bioinformatics domain.  Kepler (https://kepler-
project.org/) is a similar tool developed under the Ptolemy project 
http://ptolemy.eecs.berkeley.edu/) at Berkeley, with a somewhat richer model of 
computation.  In the engineering domain, Model Center (http://www.phoenix-int.com/) 
supports graphical representation of engineering design processes incorporating 
commercial-off-the-shelf and proprietary analysis tools along with logic, branching and 
looping constructs.  The resulting workflows can be automated. 

At their most abstract or conceptual level, workflows are simply activity networks.  
However, actually implementing workflows requires attention to the computational 
details of data transport between processes and the launching, running, and terminating of 
computational processes that may be hosted on a variety of platforms and distributed 
globally over the internet. 

5.1.   Workflow Example 
Engineering workflow management presents some challenges that are different from 
typical business processes.  Consider, for example, the workflow associated with 
designing a warehouse.  In the process of designing a warehouse, the designer may want 
to utilize Access to perform database manipulation and statistical analysis of customer 
orders, replenishment deliveries, inventories, etc. Later, the designer may wish to 
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optimize the partition of products into families, perhaps using an optimization algorithm, 
and still later, use a simulation code to evaluate the labor required for the peak month of 
operation.  After each kind of analysis, the designer may either specify some element of 
the warehouse design (technology selection, product grouping, operational policies, 
physical arrangement, etc), or change a previous specification.  Engineering workflows 
involve execution of analysis software and interaction with the user to both specify and 
modify designs. 

A conceptual warehouse design workflow, first proposed by (Sharp et al. 2008), is 
represented in Figure 8 as a SysML activity diagram.  In this workflow, the initial step is 
to “profile” the data describing the warehouse and to specify an initial “function flow 
network”, which specifies the key warehouse functions and how goods flow between the 
functions.  Subsequent steps in the workflow specify additional aspects of the warehouse 
design, and after each step, there is the possibility of returning to some previous tep in the 
workflow.  Himmeroeder (Himmeroeder 2010) compared this workflow to a structured 
warehouse design practice followed by the Fraunhofer Institute for Material Flow and 
Logistics (IML), and found that the resulting warehouse designs were quite similar.    

6. Future of MHS Analysis and Design 
Today, we see our role, and that of our students as they go into the discipline as 

researchers or practitioners, as the “modelers”, i.e., as the experts who interact with the 
problem owner to “define the problem” and then apply our special expertise to create a 
(specific) model to solve the client’s (specific) problem.  That is an “in-line” view of 
what we do—we are in between the problem owner and the problem analysis. 

In the future, this role will not disappear, but it will not be the routine experience 
for us or our students.  Rather, in the future, our role will be much more an “off line” role, 
involving two kinds of activities:  (1) we work with problem owners to define or refine a 
formal domain specific language which the problem owners can use to author, edit, and 
maintain an appropriate description of their problem—in its own terms—and we 
implement the DSL in specific authoring tools; and (2) we create appropriate model 
transformations which convert the problem owner’s problem description into an 
appropriate computational analysis model, send that model to a commercial-off-the-shelf 
(COTS) solver, and return appropriate solution information to the problem owner. 

Technology enables this phase change, but what will drive the phase change is 
basic economics.  Our current approach to modeling DELS creates very limited learning 
for the problem owner, although it may allow the modeler to develop a set of skills and 
specific knowledge that is transferable and, in a limited sense, reusable.  From the 
problem owner’s perspective, the current approach is expensive, and the result has a 
relatively short shelf life.  If something changes in the problem, often the modeler must 
be re-engaged to “update” the model, with attendant delays and costs.  As a result, many 
of our models end up being disposable, they are used once or for a limited time and then 
discarded.  More fundamentally, because our modeling languages (e.g., simulation or 
optimization) are so far removed from the problem owner’s language (i.e., how the 
problem owner talks about or thinks about the problem) validation has always been a 
major hurdle.   
By the same token, it is incredibly expensive for a single researcher to create a full 
“solution” for any class of problems, and so today we see virtually no truly system level 



computational resources in any of our courses on material handling or DELS.  As DSLs, 
model transformation, data exchange standards and workflow managers become the norm, 
this also will change.  The emergence of domain specific languages for significant 
domains, e.g., warehousing or supply chains, will allow many researchers to contribute to 
the refinement of the DSL, which will become fundamental to education and practice.  A 
DSL is a natural organizing framework for the wealth of narrow analytic models 
available in the archival literature, and data interchange standards will enable the 
interoperability needed to utilize these models collectively.  Finally, workflow managers 
will enable the creation of reusable analysis and design workflows, which can access 
analysis tools wherever they may be hosted on the internet.  Since model transformations, 
data exchange, and workflows all are based on standards, they will be easily shared 
within the communities of researchers, educators, and practitioners. 

The ultimate result of these innovations will be that our students will experience a 
much richer analysis and design education, which they will be able to translate directly 
into practice.  They will be able to model and analyze realistic case studies, and because 
they can experiment with different design approaches, they will begin to develop the 
intuition about specific DELS domains that is essential for engineering decision making, 
and that makes them valuable employees and capable entrepreneurs.  

This is, fundamentally, an optimistic view of the future of DELS research, 
education, and practice.  It is a view that embraces the potential for dramatic and 
beneficial change to the status quo.  However, realistically, the future described in this 
view is hostage to the feasibility of adopting and adapting technologies and methods that 
are not traditional in the field, and perhaps most difficult, the fostering of a community-
wide collaboration, based on shared and persistent models and standards. 

7. Conclusion 
In this paper, I’ve identified a set of technologies that enable MDA, and described a 
future in which deploying these technologies fundamentally alters the way we do 
research in the DELS domain, how we teach DELS, and how DELS are designed and 
operated.  The technologies are not conceptual—they are in routine use in software 
engineering, and making inroads into systems engineering. 

Over the past four years, research in the Keck Virtual Factory Lab at Georgia 
Tech has been focused on better understanding the potential roles of these technologies, 
and demonstrating their deployment across a broad spectrum of DELS, including 
warehousing, semiconductor manufacturing, and global supply chains.  We believe these 
demonstrations are compelling evidence for the feasibility of the MDA approach to 
DELS modeling and analysis. 

However, fully realizing the promise of this approach will require engaging a 
much larger community of researchers, because there is so much research and 
development required.  Key tasks include:  developing and promulgating domain specific 
languages for significant sub-domains, such as warehousing, discrete parts manufacturing, 
assembly, distribution systems, and supply chains;  developing metamodels for major 
analysis model types, such as simulation and optimization;  developing transformations 
from domain specific languages to analysis specific models;  and developing a range of 
large scale demonstrations or case studies.   



 

 
 

Figure 8.  Example Warehouse Design Workflow
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