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Abstract 
 

Analyzing warehouse performance across different environments is 
critical to improving overall productivity and reducing costs. Although 
two-stage DEA estimators have been shown to be statistically consistent, 
the finite sample bias of DEA in the first stage carries over to the second-
stage regression, which causes bias in the estimated coefficients of the 
contextual variables.  The bias is particularly severe when the contextual 
variables are correlated with inputs. To address this shortcoming, we apply 
insights from Johnson and Kuosmanen (2010), who demonstrate that DEA 
can be formulated as a constrained special case of the Convex 
Nonparametric Least Squares (CNLS) regression to develop a new semi-
parametric one-stage estimator. The new model is applied to a set of 
warehouses to illustrate its performance. 

 
 

1. Introduction 

Analyzing warehouse productivity involves identifying a set of inputs and outputs and 
estimating efficiency.  Often, there are variables that are contextual to the warehouse 
process in the sense that they are neither inputs nor outputs, i.e. they characterize the 
production environment or the operational practices. These variables are observed (or 
determined) by the producer while the inputs are selected and thus may be correlated with 
inputs.  Two-stage methods are commonly used to investigate the relationship between 
efficiency and the contextual variables.  In the first stage, efficiency is estimated and in 
the second stage the estimates are regressed against the contextual variables.  Estimation 
issues have been identified for the two-stage method when input variables (in an output 
oriented model) are correlated with contextual variables; however, the two-stage method 
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is still used when the parametric assumption in the first stage is believed to be overly 
restrictive and nonparametric efficiency estimation methods are preferred.  This paper 
describes the use of a single-stage model for estimating the influence of contextual 
variables on efficiency estimates.  

Understanding the relationship of contextual variables to performance levels is 
helpful for several reasons.  For instance, when finding that characteristics of the 
operational environment are significant drivers of efficiency levels, it indicates the 
existence of factors beyond managerial control that impact the level of efficiency.  When 
it is discovered that the operational policy is a significant driver of performance, it 
indicates that management should adopt these policies when considering new or 
expanded production facilities.  Thus, the results of an accurate analysis of contextual 
variables are beneficial in identifying sources of heterogeneity between production 
processes and in identifying improvement strategies.   

An early discussion of contextual variables and their effect on efficiency estimation 
was presented in Hall and Winsten (1959).  Subsequent work then developed other 
approaches to address the issue, but note that contextual variables are addressed using a 
variety of terms, e.g., environmental, exogenous, non-discretionary, efficiency factors, 
attributes, and practices, each with subtle distinctions.  The investigation of contextual 
variables using a two-stage method was pioneered by Timmer (1971), while Ray (1988) 
(1991) extended the approach by using the DEA estimator in the efficiency estimation 
and Simar et al. (1994) extended the two-stage method to stochastic frontier analysis 
(SFA) efficiency estimator in the first stage. There has also been extensive effort to 
incorporate contextual variables in the product models, particularly in the nonparametric 
setting.  A list of the relevant papers can be found in Simar and Wilson (2007).   If the 
production frontier assumes a parametric form, a single-stage method for identifying the 
frontier and estimating the impact of contextual variables has been developed by 
(Stevenson 1980).  This allows efficiency and the relationship between efficiency and the 
contextual variables to be estimated in a single stage.  Wang and Schmidt (2002) 
performed Monte Carlo simulation analysis to investigate the bias induced by estimating 
in two-stages.  The result of their analysis indicated the bias can be quite significant and 
it is the basis for their recommendation of single-stage methods in parametric models.   

There has been an ongoing debate regarding the use of parametric or nonparametric 
models.  Recently, Simar and Wilson (2007) and Banker and Natarajan (2008) argued in 
favor of the two-stage method when nonparametric efficiency models are used to 
estimate efficiency in the first stage.  Simar and Wilson emphasize the importance of a 
coherent data generation process and the issues of serial correlations among the 
efficiency estimates generated by nonparametric efficiency models.  The authors develop 
a two-stage bootstrapping method to address the serial correlation issue inherit in a two-
stage model and note that the slow convergence rate of non-parametric efficiency 
estimators limits the approaches available for asymptotic analysis in these models.   

Banker and Natarajan have also looked at two-stage models applying DEA to 
estimate efficiency followed by ordinary least squares (OLS) or maximum likelihood 
estimation in the second stage.  Under assumptions similar to Gstach (1998) and Greene 
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(1980) regarding the structure of noise, Banker and Natarajan showed that DEA followed 
by either OLS or maximum likelihood estimation produces consistent estimates in two-
stage models.  The authors benchmarked the two-stage approach against both one-stage 
and two-stage methods.  Their results indicate that if the exact functional form of the 
underlying data generation process is used in the parametric methods, a one-stage 
parametric model outperforms the non-parametric two-stage methods.  However, if the 
translog or Cobb-Douglas functional forms are used, the misspecification of the 
functional form introduces significant error, which makes a two-stage non-parametric 
method preferable.  Banker and Natarajan’s results provide evidence of the superior 
performance of two-stage nonparametric models.  

Both sets of authors clearly stated that the two-stage model is only valid if the input 
variables are uncorrelated with the contextual variables.  Note, however, that they use a 
standard production function and thus an output-oriented model. When using an input- 
oriented model similar assumptions are necessary, namely the output variables are 
uncorrelated with the contextual variables. This is a strong assumption, given that most 
contextual variables are observable to the decision-maker when determining either the 
input or output levels.  If the contextual variables are correlated with efficiency and the 
decision-maker desires to maximize efficiency, the decision-maker must consider the 
effect of the contextual variables and select the input levels that maximize the production 
process’s technical efficiency.  Further, Banker and Natarajan showed that the 
performance of the two-stage estimate deteriorated significantly as the correlation 
between inputs and the contextual variables increased.  

Two non-parametric methods for modeling contextual variables in a single state 
have been introduced in Johnson and Kuosmanen (2010).  The authors build on the 
results of Kuosmanen and Johnson (2010) who showed DEA can be formulated as a 
nonparametric least squares problem. Previously, if nonparametric efficiency estimation 
was used to estimate efficiency, it was not possible to consistently estimate efficiency and 
the impact of contextual variables when inputs and contextual variables are correlated.  
One method is shown to be equivalent to DEA and the other method, called Corrected 
Convex Non-parametric Least Squares (C2NLS), is based on a two-stage shifting method 
inspired by corrected ordinary least squares (COLS).  The models including contextual 
variables are termed 1-stage DEA and C2NLS in the presence of contextual variables. 

The warehousing literature has shown some interest in applying efficiency models to 
analyze performance, Hackman et al. (2001), De Koster and Warffemius (2005), De 
Koster and Balk (2008), and Johnson and McGinnis (2010).  All of these studies have 
used various analyses to quantify the effect of various contextual variables.    However, 
all use a two-stage approach and thus their results include the small sample bias induced 
by using the DEA estimator in the first stage.   

The paper is organized as follows.  Section 2 introduces the necessary notation and 
the models that will be used for comparison.  Section 3 introduces the one-stage 
nonparametric model, and Section 4 presents application results to demonstrate the 
method’s superior performance. Section 5 gives some concluding remarks. 
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2. Models for estimating the effects of contextual variables 

Consider the standard multiple input, single output, cross-sectional model in production 
economics: 
 
  ( )  1,...,i i iy f i nε= + ∀ =x ,   (1) 
 
where yi denotes the output of firm i, : mf R R+ +→   is the production function that 
characterizes the production technology, 1( ... ) 'i i imx x=x  is the input vector of firm i and   
represents the deviation of firm i from the frontier. The error term interacts with the 
production function additively.   

Different models of efficiency analysis can be classified according to how the 
production function f is specified.  Parametric models hypothesize a functional form and 
proceed to estimate the parameters, while nonparametric models assume certain 
regularity axioms such as monotonicity or regularity.  However, monotonicity and 
convexity are widely considered minimum axiomatic properties, Shephard (1953).  On 
this basis, advocates of nonparametric methods argue against the use of parametric 
functional form to characterize production. 

In a production process, it is often assumed that factors exist which limit the 
possibility for the process to be efficient.  The literature has labeled these variables as 
environmental, exogenous, non-distrectionary, efficiency factors, attributes, practices, 
fixed inputs, etc., and all have subtle distinctions.  We use the term, contextual variables 
and denote them as 1( ... ) 'i i irz z=z , where there are r components of the iz  vector for firm 
i.   

The underlying assumption of methods that consider contextual variables is that both 
the inputs and the contextual variables will affect the position of the efficient frontier.  
The two-stage methods implicitly assume the input levels and the contextual variables are 
uncorrelated, Kumbhakar and Lovell (2000); Wang and Schmidt (2002); and Coelli et al. 
(2005), among others.  Further, using the two-stage method when there is correlation 
between the input levels and the contextual variables can lead to significant bias in small 
sample estimates, Banker and Natarajan (2008); We will use the model presented in 
Johnson and Kuosmanen (2010) to estimate the effects of a contextual variables in a 
warehouse data set. 

Several approaches are available in the productivity literature. However, non-
parametric methods suffer from the curse of dimensionality and reduce the reference set 
identifying a local comparison group.  In addition, such approaches do not use the 
information available in all observations to determine both the shape and the level of the 
frontier.  This loss of information can be critical considering the high data requirements 
for non-parametric methods.  Two examples of this approach are Ruggiero (1996) in 
which a harsher environment in terms of the contextual variables was determined a priori 
and a given observation could only be compared to other observations in an environment 
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no better than its own.  A similar alternative was suggested by Daraio and Simar (2007) 
in which an “optimal” local neighborhood definition in terms of the z variable and a 
nearest neighbor criterion determined the peer group.   
 

3. One-state nonparametric model including contextual variables 

3.1 Least squares formulation 

A significant body of work exists for parametric extensions of SFA to address contextual 
variables (a brief introduction appears in Coelli et al. (2005) section 10.7).  However, it 
has long been held that non-parametric methods such as DEA were fundamentally 
different then regression based methods such as SFA, see for example Thanassoulis 
(1993); Cooper et al. (2007).  The considerable conceptual and philosophical gap 
between DEA and the regression-based methods has led to the separate development of 
methods to analyze contextual variables. Recently, Kuosmanen and Johnson (2010) 
established a formal connection between DEA and least squares regression by showing 
that the standard output-oriented DEA model can be equivalently formulated as a 
nonparametric least squares regression subject to monotonicity and concavity constraints 
on the frontier and sign constraints on the inefficiency terms for the single output multi-
input case and the output-oriented efficiency measure.   This finding has at least two 
significant benefits: 1. it helps to bridge the conceptual and methodological gap and 
paves the way to a unified framework of frontier analysis; 2. the least squares 
interpretation provides a platform for new methodological developments. We will use the 
platform to investigate a warehouse data set via a nonparametric regression-type model 
which allows the introduction of contextual variables while still maintaining the spirit of 
the original DEA, and lets the data speak for itself. 
 Kuosmanen and Johnson consider a non-parametric least squares method subject to 
continuity, monotonicity, and concavity constraints arising from Hildreth (1954). As 
mentioned above this method is termed Concave Nonparametric Least Squares (CNLS), 
Kuosmanen (2006). CNLS is based on the assumptions that the function f to be estimated 
belongs to the set of continuous, monotonically increasing and globally concave 
functions.  Compared to the kernel regression and spline smoothing techniques, CNLS 
does not require specification of any smoothing or bandwidth parameters. To estimate the 
CNLS formulation in the general multi-input setting, Kuosmanen (2008) showed that the 
set of continuous, monotonically increasing and globally concave functions can be 
equivalently represented by a family of piece-wise linear functions characterized by the 
celebrated Afriat’s Theorem (Afriat (1967); Afriat (1972)). Applying these insights, the 
following quadratic programming problem is used to estimate the CNLS measure: 
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In formulation (2), the first constraint estimates iα  and iβ  parameters for each 

observation; thus n different regression lines are estimated instead of fitting one 
regression line to the cloud of observed points, as in OLS.  The standard OLS problem is 
obtained by replacing the constraint i i≥ ∀β 0  by constraints 

,  , 1,...,i j i j i j nα α= = ∀ =β β . These n estimated lines can be interpreted as tangent lines 
to the unknown production function f. The slope coefficients iβ  represent the marginal 
products of inputs (i.e., the sub-gradients ∇ ( )if x ). The second constraint imposes 
concavity by applying a system of Afriat inequalities which are the key to modeling 
concavity constraints in the general multiple regressor setting. The third constraint 
imposes monotonicity.  

CNLS can be extended to estimate a frontier production frontier in two ways.  The 
first, inspired by Aigner and Chu’s (1968) Parametric Programming approach (PP), is to 
restrict the error terms of the CNLS model to be one-sided; the error terms can thus be 
interpreted as inefficiency. This sign-constrained variant of the CNLS problem is stated 
formally as: 
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Kuosmanen and Johnson prove the hybrid model of PP and CNLS is equivalent to the 
standard DEA model. 

Second, CNLS can be used in a two-stage shifting method, which we term Corrected 
Nonparametric Least Squares (C2NLS). It is a nonparametric variant of the Corrected 
Ordinary Least Squares (COLS) Winsten (1957); Greene (1980) model in which CNLS 
replaces the first-stage parametric OLS regression.  Like COLS, the C2NLS method is 
implemented in two stages, which can be stated as follows:  
 

Stage 1: Estimate ( )i iE y x  by solving the CNLS problem (3). Denote the CNLS 

residuals by CNLS
iε .    

Stage 2: Shift the residuals analogous to the COLS procedure; the C2NLS 
efficiency estimator is: 
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  2ˆ maxC NLS CNLS CNLS
i i hh
ε ε ε= − , (4) 

 
where values of 2ˆC NLS

iε  range from [ ]0,−∞  with 0 indicating efficient performance. 
Similarly, adjust the CNLS intercepts iα  as: 
  2ˆ maxC NLS CNLS CNLS

i i hh
α α ε= + , (5) 

 
where CNLS

iα  is the optimal intercept for firm i and 2ˆ C NLS
iα  is the C2NLS estimator. Slope 

coefficients ˆ
iβ  for C2NLS are obtained directly as the optimal solution to (3).    

Note that in the formulation above the error term (or inefficiency term if we are 
working in a strictly deterministic setting) interacts with the production function in an 
additive manner.  Heteroskedasticity is a common problem that can arise in econometric 
estimation.  Kuosmanen and Johnson prove the consistency of the least squares 
formulation of the DEA problem.  As with OLS, the slope coefficients iβ  from the 
nonparametric least squares formulation of DEA are consistent even in the presence of 
heteroskedasticity.  However, the consistency of the efficiency estimates will be affected 
by heteroskedasticity.  Several standard tests in the literature are available to identify if a 
particular data set has heteroskedastic correlations between variables, e.g.,  Koenker’s 
version of Breusch-Pagan test, or the White test. 
 
3.1 Models including contextual variables 

Now, we can extend the least squares formulation of DEA to include contextual variables, 
termed the 1-stage DEA model in the presence of contextual variables.  We can also 
C2NLS to handle contextual variables.  Starting from a DEA model now formulated as a 
regression-type optimization problem allows us to incorporate the contextual variables 
which are often considered in a two-stage analysis into the first stage using any number 
of methods.  The methods used for stochastic frontier analysis (SFA) can be used in this 
setting, e.g., Kumbhakar and Lovell (2000); Coelli et al. (2005).  We assume that 
traditional interpretation that deviations from the frontier can be explained by non-
discretionary variables and inefficiency: 
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where iθ  is the remaining inefficiency for the ith firm that cannot be explained by 
contextual variables.  This interpretation is important because we can further decompose 
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iθ  in the spirit of Jondrow et al. (1982) to allow for the measurement of efficiency in the 
presence of noise.  Thus:  
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Under a basic set of assumptions the one-stage DEA model can be shown to produce 
consistent estimators of both iθ  and iδ .  See Johnson and Kuosmanen (2010) for details. 
 

4. Warehouse analysis 

Our data set of 216 warehouse records collected over a five-year period is treated as a 
cross-section, because the technical progress during the time period is believed to be 
minimal.  The data were collected via the iDEAs-W Web site (http://ise.tamu.edu/ideas) 
and each data record summarizes the performance of a warehouse for a one-year period.  
iDEAs-W provides a browser-based interface which lets users enter data and receive an 
efficiency estimate based on the warehouse data collected to that point.  Because not all 
respondents provided data for the contextual variables, the analysis below includes a 
subset of the data using only the respondents who provided the contextual variable 
information.  A three-input (labor; space; investment), single-output (total lines shipped) 
model is specified to characterize warehouse performance.  For more details regarding 
the data set or collection process, see Johnson and McGinnis (2010) and Johnson et al. 
(2010).   

For the purposes of this analysis, warehouses attributes beyond the control of the 
warehouse manager are investigated.  The eight contextual variables are: Number of 
Replenishments; Inventory Turns; Number of Stock-keeping Units (SKUs); SKU Churn; 
Seasonality; Average Weight per Order; Labor Turnover; and Percentage of Temporary 
Labor.  While some of these variables may seem to be under the control of the warehouse 
manager, we argue that they are responses to industry demands, or characteristics of the 
market or the surrounding environment.  We define them as:  

Number of Replenishments: a count of the number of shipments received from all 
suppliers.  Clearly, the warehouse manager can control this factor, but this would 
typically be done in response to customer demands, characteristics of the products, or 
shipping cost.  Thus, this variable characterizes the product and its market.   

Inventory Turns: number of times the entire inventory of a warehouse is sold and 
replaced in a year.  This variable characterizes the amount of inventory the warehouse 
must hold to ensure a particular service level and thus is a proxy for the service level 
requirements of the industry. 
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Number of SKUs: a count of the number of different types of items stocked in the 
warehouse.  Its use in our analysis distinguishes warehouses that handle a limited set of 
products in particularly high volumes.  This variable characterizes the array of products 
the warehouse must provide to its customers.   

SKU Churn: percentage of SKUs that changes from year to year, calculated as (SKUs 
dropped last year+ SKUs added last year)/ (beginning total SKUs last year).  If new 
products are frequently introduced and some produced are considered obsolete, it could 
impact operational efficiency.  This variable characterizes the dynamics of the industry 
which the warehouse serves.    

Seasonality: defined as (volume in the peak month / average volume per month), 
where volume s based on items (pieces, or units). The seasonality of the demand for 
products has a significant impact of the efficiency of warehouse operations.   

Average Weight per Order: size of the orders handled by the warehouse.  This 
characteristic may indicate a particular warehouse can or cannot use particular material 
handling strategies, thus narrowing operational choices and impacting productivity. 

Labor Turnover: percentage of workers that changes from year to year, calculated as 
(workers who quit or were fired last year+ workers hired last year)/ (beginning number of 
workers last year).  Workforce dynamics can be due to salary limitations, local workforce 
force population, availability, skills, etc.   

Percentage of Temporary Labor: the percentage of direct labor hours performed by 
workers who either do not work for the firm that owns and operates the warehouse, or are 
hired with the expectation of working less than 1 year.   

The analysis presented next was performed by estimating (7) for each contextual 
variable separately due to data limitations.  Table 1 reports the delta coefficients 
estimated and their significance level. Note that the number of total replenishments has a 
statistically significant and negative effect on the total number of lines shipped.  On 
average an increase of 100 additional shipments leads to 2 fewer lines shipped.  Note, too, 
that seasonality and temporary labor has negative effects on the number of lines shipped; 
these coefficients are significant at the 5 percent level. Increased inventory turns 
positively effect the number of lines shipped, however, the coefficient is only significant 
at the 10 percent level.  Other factors, i.e. Number of SKUs, SKU Churn, Average Order 
Weight, and Labor Turnover are insignificant in predicting the total number of lines 
shipped.   

We expect that warehouse operating in industries with high seasonality, requiring 
high service levels, and using significant amounts of temporary labor will be at a 
significant efficiency disadvantage while  those operating in industries that allow lower 
inventory levels will have an advantage. 
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Table 1: List of warehouse attributes investigated; estimate of their 
effect on lines shipped; and significance level.  

Coefficients and 
Contextual variable 

Significance 
Number of replenishments  -0.022*** 
Inventory turns 220,000* 
Number of SKUs 0 
SKU churn 2,120 
Seasonality   -274,000** 
Average weight per order -43.4 
Labor turnover -73,700 
Percentage of temporary labor  -20,600** 

The significance of the level of the coefficients at the 1, 5, and 10 
percent levels is indicated by ***,**, and *, respectively. 

 

5. Conclusion 

Comparing warehouse operations in different environments is an important issue when 
benchmarking warehouse performance.  This paper addresses the concern by using a one-
stage method introduced by Johnson and Kuosmanen (2010), which jointly estimates 
both the production function and the effect of the context.  The new semi-parametric 
model estimates the production function consistent with axioms taken from 
microeconomic theory while estimating first-order parametric effects of the production 
context.   
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